Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem17 Structured version   Unicode version

Theorem stoweidlem17 27756
Description: This lemma proves that the function  g (as defined in [BrosowskiDeutsh] p. 91, at the end of page 91) belongs to the subalgebra. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem17.1  |-  F/ t
ph
stoweidlem17.2  |-  ( ph  ->  N  e.  NN )
stoweidlem17.3  |-  ( ph  ->  X : ( 0 ... N ) --> A )
stoweidlem17.4  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
stoweidlem17.5  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
stoweidlem17.6  |-  ( (
ph  /\  x  e.  RR )  ->  ( t  e.  T  |->  x )  e.  A )
stoweidlem17.7  |-  ( ph  ->  E  e.  RR )
stoweidlem17.8  |-  ( (
ph  /\  f  e.  A )  ->  f : T --> RR )
Assertion
Ref Expression
stoweidlem17  |-  ( ph  ->  ( t  e.  T  |-> 
sum_ i  e.  ( 0 ... N ) ( E  x.  (
( X `  i
) `  t )
) )  e.  A
)
Distinct variable groups:    f, g,
i, t, E    A, f, g    T, f, g, i, t    f, X, g, i, t    ph, f,
g, i    i, N, t    x, t, E    x, A    x, T    ph, x
Allowed substitution hints:    ph( t)    A( t, i)    N( x, f, g)    X( x)

Proof of Theorem stoweidlem17
Dummy variables  m  r  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 stoweidlem17.2 . . 3  |-  ( ph  ->  N  e.  NN )
21nnnn0d 10279 . 2  |-  ( ph  ->  N  e.  NN0 )
3 nn0uz 10525 . . . . 5  |-  NN0  =  ( ZZ>= `  0 )
42, 3syl6eleq 2528 . . . 4  |-  ( ph  ->  N  e.  ( ZZ>= ` 
0 ) )
5 eluzfz2 11070 . . . 4  |-  ( N  e.  ( ZZ>= `  0
)  ->  N  e.  ( 0 ... N
) )
64, 5syl 16 . . 3  |-  ( ph  ->  N  e.  ( 0 ... N ) )
76ancli 536 . 2  |-  ( ph  ->  ( ph  /\  N  e.  ( 0 ... N
) ) )
8 eleq1 2498 . . . . 5  |-  ( n  =  0  ->  (
n  e.  ( 0 ... N )  <->  0  e.  ( 0 ... N
) ) )
98anbi2d 686 . . . 4  |-  ( n  =  0  ->  (
( ph  /\  n  e.  ( 0 ... N
) )  <->  ( ph  /\  0  e.  ( 0 ... N ) ) ) )
10 oveq2 6092 . . . . . . 7  |-  ( n  =  0  ->  (
0 ... n )  =  ( 0 ... 0
) )
1110sumeq1d 12500 . . . . . 6  |-  ( n  =  0  ->  sum_ i  e.  ( 0 ... n
) ( E  x.  ( ( X `  i ) `  t
) )  =  sum_ i  e.  ( 0 ... 0 ) ( E  x.  ( ( X `  i ) `
 t ) ) )
1211mpteq2dv 4299 . . . . 5  |-  ( n  =  0  ->  (
t  e.  T  |->  sum_ i  e.  ( 0 ... n ) ( E  x.  ( ( X `  i ) `
 t ) ) )  =  ( t  e.  T  |->  sum_ i  e.  ( 0 ... 0
) ( E  x.  ( ( X `  i ) `  t
) ) ) )
1312eleq1d 2504 . . . 4  |-  ( n  =  0  ->  (
( t  e.  T  |-> 
sum_ i  e.  ( 0 ... n ) ( E  x.  (
( X `  i
) `  t )
) )  e.  A  <->  ( t  e.  T  |->  sum_ i  e.  ( 0 ... 0 ) ( E  x.  ( ( X `  i ) `
 t ) ) )  e.  A ) )
149, 13imbi12d 313 . . 3  |-  ( n  =  0  ->  (
( ( ph  /\  n  e.  ( 0 ... N ) )  ->  ( t  e.  T  |->  sum_ i  e.  ( 0 ... n ) ( E  x.  (
( X `  i
) `  t )
) )  e.  A
)  <->  ( ( ph  /\  0  e.  ( 0 ... N ) )  ->  ( t  e.  T  |->  sum_ i  e.  ( 0 ... 0 ) ( E  x.  (
( X `  i
) `  t )
) )  e.  A
) ) )
15 eleq1 2498 . . . . 5  |-  ( n  =  m  ->  (
n  e.  ( 0 ... N )  <->  m  e.  ( 0 ... N
) ) )
1615anbi2d 686 . . . 4  |-  ( n  =  m  ->  (
( ph  /\  n  e.  ( 0 ... N
) )  <->  ( ph  /\  m  e.  ( 0 ... N ) ) ) )
17 oveq2 6092 . . . . . . 7  |-  ( n  =  m  ->  (
0 ... n )  =  ( 0 ... m
) )
1817sumeq1d 12500 . . . . . 6  |-  ( n  =  m  ->  sum_ i  e.  ( 0 ... n
) ( E  x.  ( ( X `  i ) `  t
) )  =  sum_ i  e.  ( 0 ... m ) ( E  x.  ( ( X `  i ) `
 t ) ) )
1918mpteq2dv 4299 . . . . 5  |-  ( n  =  m  ->  (
t  e.  T  |->  sum_ i  e.  ( 0 ... n ) ( E  x.  ( ( X `  i ) `
 t ) ) )  =  ( t  e.  T  |->  sum_ i  e.  ( 0 ... m
) ( E  x.  ( ( X `  i ) `  t
) ) ) )
2019eleq1d 2504 . . . 4  |-  ( n  =  m  ->  (
( t  e.  T  |-> 
sum_ i  e.  ( 0 ... n ) ( E  x.  (
( X `  i
) `  t )
) )  e.  A  <->  ( t  e.  T  |->  sum_ i  e.  ( 0 ... m ) ( E  x.  ( ( X `  i ) `
 t ) ) )  e.  A ) )
2116, 20imbi12d 313 . . 3  |-  ( n  =  m  ->  (
( ( ph  /\  n  e.  ( 0 ... N ) )  ->  ( t  e.  T  |->  sum_ i  e.  ( 0 ... n ) ( E  x.  (
( X `  i
) `  t )
) )  e.  A
)  <->  ( ( ph  /\  m  e.  ( 0 ... N ) )  ->  ( t  e.  T  |->  sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  t )
) )  e.  A
) ) )
22 eleq1 2498 . . . . 5  |-  ( n  =  ( m  + 
1 )  ->  (
n  e.  ( 0 ... N )  <->  ( m  +  1 )  e.  ( 0 ... N
) ) )
2322anbi2d 686 . . . 4  |-  ( n  =  ( m  + 
1 )  ->  (
( ph  /\  n  e.  ( 0 ... N
) )  <->  ( ph  /\  ( m  +  1 )  e.  ( 0 ... N ) ) ) )
24 oveq2 6092 . . . . . . 7  |-  ( n  =  ( m  + 
1 )  ->  (
0 ... n )  =  ( 0 ... (
m  +  1 ) ) )
2524sumeq1d 12500 . . . . . 6  |-  ( n  =  ( m  + 
1 )  ->  sum_ i  e.  ( 0 ... n
) ( E  x.  ( ( X `  i ) `  t
) )  =  sum_ i  e.  ( 0 ... ( m  + 
1 ) ) ( E  x.  ( ( X `  i ) `
 t ) ) )
2625mpteq2dv 4299 . . . . 5  |-  ( n  =  ( m  + 
1 )  ->  (
t  e.  T  |->  sum_ i  e.  ( 0 ... n ) ( E  x.  ( ( X `  i ) `
 t ) ) )  =  ( t  e.  T  |->  sum_ i  e.  ( 0 ... (
m  +  1 ) ) ( E  x.  ( ( X `  i ) `  t
) ) ) )
2726eleq1d 2504 . . . 4  |-  ( n  =  ( m  + 
1 )  ->  (
( t  e.  T  |-> 
sum_ i  e.  ( 0 ... n ) ( E  x.  (
( X `  i
) `  t )
) )  e.  A  <->  ( t  e.  T  |->  sum_ i  e.  ( 0 ... ( m  + 
1 ) ) ( E  x.  ( ( X `  i ) `
 t ) ) )  e.  A ) )
2823, 27imbi12d 313 . . 3  |-  ( n  =  ( m  + 
1 )  ->  (
( ( ph  /\  n  e.  ( 0 ... N ) )  ->  ( t  e.  T  |->  sum_ i  e.  ( 0 ... n ) ( E  x.  (
( X `  i
) `  t )
) )  e.  A
)  <->  ( ( ph  /\  ( m  +  1 )  e.  ( 0 ... N ) )  ->  ( t  e.  T  |->  sum_ i  e.  ( 0 ... ( m  +  1 ) ) ( E  x.  (
( X `  i
) `  t )
) )  e.  A
) ) )
29 eleq1 2498 . . . . 5  |-  ( n  =  N  ->  (
n  e.  ( 0 ... N )  <->  N  e.  ( 0 ... N
) ) )
3029anbi2d 686 . . . 4  |-  ( n  =  N  ->  (
( ph  /\  n  e.  ( 0 ... N
) )  <->  ( ph  /\  N  e.  ( 0 ... N ) ) ) )
31 oveq2 6092 . . . . . . 7  |-  ( n  =  N  ->  (
0 ... n )  =  ( 0 ... N
) )
3231sumeq1d 12500 . . . . . 6  |-  ( n  =  N  ->  sum_ i  e.  ( 0 ... n
) ( E  x.  ( ( X `  i ) `  t
) )  =  sum_ i  e.  ( 0 ... N ) ( E  x.  ( ( X `  i ) `
 t ) ) )
3332mpteq2dv 4299 . . . . 5  |-  ( n  =  N  ->  (
t  e.  T  |->  sum_ i  e.  ( 0 ... n ) ( E  x.  ( ( X `  i ) `
 t ) ) )  =  ( t  e.  T  |->  sum_ i  e.  ( 0 ... N
) ( E  x.  ( ( X `  i ) `  t
) ) ) )
3433eleq1d 2504 . . . 4  |-  ( n  =  N  ->  (
( t  e.  T  |-> 
sum_ i  e.  ( 0 ... n ) ( E  x.  (
( X `  i
) `  t )
) )  e.  A  <->  ( t  e.  T  |->  sum_ i  e.  ( 0 ... N ) ( E  x.  ( ( X `  i ) `
 t ) ) )  e.  A ) )
3530, 34imbi12d 313 . . 3  |-  ( n  =  N  ->  (
( ( ph  /\  n  e.  ( 0 ... N ) )  ->  ( t  e.  T  |->  sum_ i  e.  ( 0 ... n ) ( E  x.  (
( X `  i
) `  t )
) )  e.  A
)  <->  ( ( ph  /\  N  e.  ( 0 ... N ) )  ->  ( t  e.  T  |->  sum_ i  e.  ( 0 ... N ) ( E  x.  (
( X `  i
) `  t )
) )  e.  A
) ) )
36 0z 10298 . . . . . . . . 9  |-  0  e.  ZZ
37 fzsn 11099 . . . . . . . . 9  |-  ( 0  e.  ZZ  ->  (
0 ... 0 )  =  { 0 } )
3836, 37ax-mp 5 . . . . . . . 8  |-  ( 0 ... 0 )  =  { 0 }
3938sumeq1i 12497 . . . . . . 7  |-  sum_ i  e.  ( 0 ... 0
) ( E  x.  ( ( X `  i ) `  t
) )  =  sum_ i  e.  { 0 }  ( E  x.  ( ( X `  i ) `  t
) )
4039mpteq2i 4295 . . . . . 6  |-  ( t  e.  T  |->  sum_ i  e.  ( 0 ... 0
) ( E  x.  ( ( X `  i ) `  t
) ) )  =  ( t  e.  T  |-> 
sum_ i  e.  {
0 }  ( E  x.  ( ( X `
 i ) `  t ) ) )
41 stoweidlem17.1 . . . . . . 7  |-  F/ t
ph
42 stoweidlem17.7 . . . . . . . . . . 11  |-  ( ph  ->  E  e.  RR )
4342adantr 453 . . . . . . . . . 10  |-  ( (
ph  /\  t  e.  T )  ->  E  e.  RR )
4443recnd 9119 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  T )  ->  E  e.  CC )
45 stoweidlem17.3 . . . . . . . . . . . . 13  |-  ( ph  ->  X : ( 0 ... N ) --> A )
46 nnz 10308 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN  ->  N  e.  ZZ )
47 nngt0 10034 . . . . . . . . . . . . . . . . . 18  |-  ( N  e.  NN  ->  0  <  N )
48 0re 9096 . . . . . . . . . . . . . . . . . . 19  |-  0  e.  RR
49 nnre 10012 . . . . . . . . . . . . . . . . . . 19  |-  ( N  e.  NN  ->  N  e.  RR )
50 ltle 9168 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 0  e.  RR  /\  N  e.  RR )  ->  ( 0  <  N  ->  0  <_  N )
)
5148, 49, 50sylancr 646 . . . . . . . . . . . . . . . . . 18  |-  ( N  e.  NN  ->  (
0  <  N  ->  0  <_  N ) )
5247, 51mpd 15 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN  ->  0  <_  N )
5346, 52jca 520 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  ->  ( N  e.  ZZ  /\  0  <_  N ) )
541, 53syl 16 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( N  e.  ZZ  /\  0  <_  N )
)
5536eluz1i 10500 . . . . . . . . . . . . . . 15  |-  ( N  e.  ( ZZ>= `  0
)  <->  ( N  e.  ZZ  /\  0  <_  N ) )
5654, 55sylibr 205 . . . . . . . . . . . . . 14  |-  ( ph  ->  N  e.  ( ZZ>= ` 
0 ) )
57 eluzfz1 11069 . . . . . . . . . . . . . 14  |-  ( N  e.  ( ZZ>= `  0
)  ->  0  e.  ( 0 ... N
) )
5856, 57syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  0  e.  ( 0 ... N ) )
5945, 58ffvelrnd 5874 . . . . . . . . . . . 12  |-  ( ph  ->  ( X `  0
)  e.  A )
60 feq1 5579 . . . . . . . . . . . . . 14  |-  ( f  =  ( X ` 
0 )  ->  (
f : T --> RR  <->  ( X `  0 ) : T --> RR ) )
6160imbi2d 309 . . . . . . . . . . . . 13  |-  ( f  =  ( X ` 
0 )  ->  (
( ph  ->  f : T --> RR )  <->  ( ph  ->  ( X `  0
) : T --> RR ) ) )
62 stoweidlem17.8 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  f  e.  A )  ->  f : T --> RR )
6362expcom 426 . . . . . . . . . . . . 13  |-  ( f  e.  A  ->  ( ph  ->  f : T --> RR ) )
6461, 63vtoclga 3019 . . . . . . . . . . . 12  |-  ( ( X `  0 )  e.  A  ->  ( ph  ->  ( X ` 
0 ) : T --> RR ) )
6559, 64mpcom 35 . . . . . . . . . . 11  |-  ( ph  ->  ( X `  0
) : T --> RR )
6665fnvinran 27675 . . . . . . . . . 10  |-  ( (
ph  /\  t  e.  T )  ->  (
( X `  0
) `  t )  e.  RR )
6766recnd 9119 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  T )  ->  (
( X `  0
) `  t )  e.  CC )
6844, 67mulcld 9113 . . . . . . . 8  |-  ( (
ph  /\  t  e.  T )  ->  ( E  x.  ( ( X `  0 ) `  t ) )  e.  CC )
69 fveq2 5731 . . . . . . . . . . 11  |-  ( i  =  0  ->  ( X `  i )  =  ( X ` 
0 ) )
7069fveq1d 5733 . . . . . . . . . 10  |-  ( i  =  0  ->  (
( X `  i
) `  t )  =  ( ( X `
 0 ) `  t ) )
7170oveq2d 6100 . . . . . . . . 9  |-  ( i  =  0  ->  ( E  x.  ( ( X `  i ) `  t ) )  =  ( E  x.  (
( X `  0
) `  t )
) )
7271sumsn 12539 . . . . . . . 8  |-  ( ( 0  e.  ZZ  /\  ( E  x.  (
( X `  0
) `  t )
)  e.  CC )  ->  sum_ i  e.  {
0 }  ( E  x.  ( ( X `
 i ) `  t ) )  =  ( E  x.  (
( X `  0
) `  t )
) )
7336, 68, 72sylancr 646 . . . . . . 7  |-  ( (
ph  /\  t  e.  T )  ->  sum_ i  e.  { 0 }  ( E  x.  ( ( X `  i ) `  t ) )  =  ( E  x.  (
( X `  0
) `  t )
) )
7441, 73mpteq2da 4297 . . . . . 6  |-  ( ph  ->  ( t  e.  T  |-> 
sum_ i  e.  {
0 }  ( E  x.  ( ( X `
 i ) `  t ) ) )  =  ( t  e.  T  |->  ( E  x.  ( ( X ` 
0 ) `  t
) ) ) )
7540, 74syl5eq 2482 . . . . 5  |-  ( ph  ->  ( t  e.  T  |-> 
sum_ i  e.  ( 0 ... 0 ) ( E  x.  (
( X `  i
) `  t )
) )  =  ( t  e.  T  |->  ( E  x.  ( ( X `  0 ) `
 t ) ) ) )
76 stoweidlem17.5 . . . . . 6  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
77 stoweidlem17.6 . . . . . 6  |-  ( (
ph  /\  x  e.  RR )  ->  ( t  e.  T  |->  x )  e.  A )
7841, 76, 77, 62, 42, 59stoweidlem2 27741 . . . . 5  |-  ( ph  ->  ( t  e.  T  |->  ( E  x.  (
( X `  0
) `  t )
) )  e.  A
)
7975, 78eqeltrd 2512 . . . 4  |-  ( ph  ->  ( t  e.  T  |-> 
sum_ i  e.  ( 0 ... 0 ) ( E  x.  (
( X `  i
) `  t )
) )  e.  A
)
8079adantr 453 . . 3  |-  ( (
ph  /\  0  e.  ( 0 ... N
) )  ->  (
t  e.  T  |->  sum_ i  e.  ( 0 ... 0 ) ( E  x.  ( ( X `  i ) `
 t ) ) )  e.  A )
81 eqidd 2439 . . . . . . . . . . . . . . . 16  |-  ( r  =  t  ->  E  =  E )
8281cbvmptv 4303 . . . . . . . . . . . . . . 15  |-  ( r  e.  T  |->  E )  =  ( t  e.  T  |->  E )
8382eqcomi 2442 . . . . . . . . . . . . . 14  |-  ( t  e.  T  |->  E )  =  ( r  e.  T  |->  E )
8483a1i 11 . . . . . . . . . . . . 13  |-  ( (
ph  /\  t  e.  T )  ->  (
t  e.  T  |->  E )  =  ( r  e.  T  |->  E ) )
85 eqidd 2439 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  t  e.  T )  /\  r  =  t )  ->  E  =  E )
86 simpr 449 . . . . . . . . . . . . 13  |-  ( (
ph  /\  t  e.  T )  ->  t  e.  T )
8784, 85, 86, 43fvmptd 5813 . . . . . . . . . . . 12  |-  ( (
ph  /\  t  e.  T )  ->  (
( t  e.  T  |->  E ) `  t
)  =  E )
8887oveq1d 6099 . . . . . . . . . . 11  |-  ( (
ph  /\  t  e.  T )  ->  (
( ( t  e.  T  |->  E ) `  t )  x.  (
( X `  (
m  +  1 ) ) `  t ) )  =  ( E  x.  ( ( X `
 ( m  + 
1 ) ) `  t ) ) )
8941, 88mpteq2da 4297 . . . . . . . . . 10  |-  ( ph  ->  ( t  e.  T  |->  ( ( ( t  e.  T  |->  E ) `
 t )  x.  ( ( X `  ( m  +  1
) ) `  t
) ) )  =  ( t  e.  T  |->  ( E  x.  (
( X `  (
m  +  1 ) ) `  t ) ) ) )
9089adantr 453 . . . . . . . . 9  |-  ( (
ph  /\  ( m  +  1 )  e.  ( 0 ... N
) )  ->  (
t  e.  T  |->  ( ( ( t  e.  T  |->  E ) `  t )  x.  (
( X `  (
m  +  1 ) ) `  t ) ) )  =  ( t  e.  T  |->  ( E  x.  ( ( X `  ( m  +  1 ) ) `
 t ) ) ) )
9145fnvinran 27675 . . . . . . . . . 10  |-  ( (
ph  /\  ( m  +  1 )  e.  ( 0 ... N
) )  ->  ( X `  ( m  +  1 ) )  e.  A )
92 simpl 445 . . . . . . . . . 10  |-  ( (
ph  /\  ( m  +  1 )  e.  ( 0 ... N
) )  ->  ph )
93 id 21 . . . . . . . . . . . . . . . 16  |-  ( x  =  E  ->  x  =  E )
9493mpteq2dv 4299 . . . . . . . . . . . . . . 15  |-  ( x  =  E  ->  (
t  e.  T  |->  x )  =  ( t  e.  T  |->  E ) )
9594eleq1d 2504 . . . . . . . . . . . . . 14  |-  ( x  =  E  ->  (
( t  e.  T  |->  x )  e.  A  <->  ( t  e.  T  |->  E )  e.  A ) )
9695imbi2d 309 . . . . . . . . . . . . 13  |-  ( x  =  E  ->  (
( ph  ->  ( t  e.  T  |->  x )  e.  A )  <->  ( ph  ->  ( t  e.  T  |->  E )  e.  A
) ) )
9777expcom 426 . . . . . . . . . . . . 13  |-  ( x  e.  RR  ->  ( ph  ->  ( t  e.  T  |->  x )  e.  A ) )
9896, 97vtoclga 3019 . . . . . . . . . . . 12  |-  ( E  e.  RR  ->  ( ph  ->  ( t  e.  T  |->  E )  e.  A ) )
9942, 98mpcom 35 . . . . . . . . . . 11  |-  ( ph  ->  ( t  e.  T  |->  E )  e.  A
)
10099adantr 453 . . . . . . . . . 10  |-  ( (
ph  /\  ( m  +  1 )  e.  ( 0 ... N
) )  ->  (
t  e.  T  |->  E )  e.  A )
101 fveq1 5730 . . . . . . . . . . . . . . . 16  |-  ( g  =  ( X `  ( m  +  1
) )  ->  (
g `  t )  =  ( ( X `
 ( m  + 
1 ) ) `  t ) )
102101oveq2d 6100 . . . . . . . . . . . . . . 15  |-  ( g  =  ( X `  ( m  +  1
) )  ->  (
( ( t  e.  T  |->  E ) `  t )  x.  (
g `  t )
)  =  ( ( ( t  e.  T  |->  E ) `  t
)  x.  ( ( X `  ( m  +  1 ) ) `
 t ) ) )
103102mpteq2dv 4299 . . . . . . . . . . . . . 14  |-  ( g  =  ( X `  ( m  +  1
) )  ->  (
t  e.  T  |->  ( ( ( t  e.  T  |->  E ) `  t )  x.  (
g `  t )
) )  =  ( t  e.  T  |->  ( ( ( t  e.  T  |->  E ) `  t )  x.  (
( X `  (
m  +  1 ) ) `  t ) ) ) )
104103eleq1d 2504 . . . . . . . . . . . . 13  |-  ( g  =  ( X `  ( m  +  1
) )  ->  (
( t  e.  T  |->  ( ( ( t  e.  T  |->  E ) `
 t )  x.  ( g `  t
) ) )  e.  A  <->  ( t  e.  T  |->  ( ( ( t  e.  T  |->  E ) `  t )  x.  ( ( X `
 ( m  + 
1 ) ) `  t ) ) )  e.  A ) )
105104imbi2d 309 . . . . . . . . . . . 12  |-  ( g  =  ( X `  ( m  +  1
) )  ->  (
( ( ph  /\  ( t  e.  T  |->  E )  e.  A
)  ->  ( t  e.  T  |->  ( ( ( t  e.  T  |->  E ) `  t
)  x.  ( g `
 t ) ) )  e.  A )  <-> 
( ( ph  /\  ( t  e.  T  |->  E )  e.  A
)  ->  ( t  e.  T  |->  ( ( ( t  e.  T  |->  E ) `  t
)  x.  ( ( X `  ( m  +  1 ) ) `
 t ) ) )  e.  A ) ) )
10682eleq1i 2501 . . . . . . . . . . . . . . . 16  |-  ( ( r  e.  T  |->  E )  e.  A  <->  ( t  e.  T  |->  E )  e.  A )
107 fveq1 5730 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( f  =  ( r  e.  T  |->  E )  -> 
( f `  t
)  =  ( ( r  e.  T  |->  E ) `  t ) )
10882fveq1i 5732 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( r  e.  T  |->  E ) `  t )  =  ( ( t  e.  T  |->  E ) `
 t )
109107, 108syl6eq 2486 . . . . . . . . . . . . . . . . . . . . 21  |-  ( f  =  ( r  e.  T  |->  E )  -> 
( f `  t
)  =  ( ( t  e.  T  |->  E ) `  t ) )
110109oveq1d 6099 . . . . . . . . . . . . . . . . . . . 20  |-  ( f  =  ( r  e.  T  |->  E )  -> 
( ( f `  t )  x.  (
g `  t )
)  =  ( ( ( t  e.  T  |->  E ) `  t
)  x.  ( g `
 t ) ) )
111110mpteq2dv 4299 . . . . . . . . . . . . . . . . . . 19  |-  ( f  =  ( r  e.  T  |->  E )  -> 
( t  e.  T  |->  ( ( f `  t )  x.  (
g `  t )
) )  =  ( t  e.  T  |->  ( ( ( t  e.  T  |->  E ) `  t )  x.  (
g `  t )
) ) )
112111eleq1d 2504 . . . . . . . . . . . . . . . . . 18  |-  ( f  =  ( r  e.  T  |->  E )  -> 
( ( t  e.  T  |->  ( ( f `
 t )  x.  ( g `  t
) ) )  e.  A  <->  ( t  e.  T  |->  ( ( ( t  e.  T  |->  E ) `  t )  x.  ( g `  t ) ) )  e.  A ) )
113112imbi2d 309 . . . . . . . . . . . . . . . . 17  |-  ( f  =  ( r  e.  T  |->  E )  -> 
( ( ( ph  /\  g  e.  A )  ->  ( t  e.  T  |->  ( ( f `
 t )  x.  ( g `  t
) ) )  e.  A )  <->  ( ( ph  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( ( t  e.  T  |->  E ) `  t
)  x.  ( g `
 t ) ) )  e.  A ) ) )
114763com12 1158 . . . . . . . . . . . . . . . . . 18  |-  ( ( f  e.  A  /\  ph 
/\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
1151143expib 1157 . . . . . . . . . . . . . . . . 17  |-  ( f  e.  A  ->  (
( ph  /\  g  e.  A )  ->  (
t  e.  T  |->  ( ( f `  t
)  x.  ( g `
 t ) ) )  e.  A ) )
116113, 115vtoclga 3019 . . . . . . . . . . . . . . . 16  |-  ( ( r  e.  T  |->  E )  e.  A  -> 
( ( ph  /\  g  e.  A )  ->  ( t  e.  T  |->  ( ( ( t  e.  T  |->  E ) `
 t )  x.  ( g `  t
) ) )  e.  A ) )
117106, 116sylbir 206 . . . . . . . . . . . . . . 15  |-  ( ( t  e.  T  |->  E )  e.  A  -> 
( ( ph  /\  g  e.  A )  ->  ( t  e.  T  |->  ( ( ( t  e.  T  |->  E ) `
 t )  x.  ( g `  t
) ) )  e.  A ) )
1181173impib 1152 . . . . . . . . . . . . . 14  |-  ( ( ( t  e.  T  |->  E )  e.  A  /\  ph  /\  g  e.  A )  ->  (
t  e.  T  |->  ( ( ( t  e.  T  |->  E ) `  t )  x.  (
g `  t )
) )  e.  A
)
1191183com13 1159 . . . . . . . . . . . . 13  |-  ( ( g  e.  A  /\  ph 
/\  ( t  e.  T  |->  E )  e.  A )  ->  (
t  e.  T  |->  ( ( ( t  e.  T  |->  E ) `  t )  x.  (
g `  t )
) )  e.  A
)
1201193expib 1157 . . . . . . . . . . . 12  |-  ( g  e.  A  ->  (
( ph  /\  (
t  e.  T  |->  E )  e.  A )  ->  ( t  e.  T  |->  ( ( ( t  e.  T  |->  E ) `  t )  x.  ( g `  t ) ) )  e.  A ) )
121105, 120vtoclga 3019 . . . . . . . . . . 11  |-  ( ( X `  ( m  +  1 ) )  e.  A  ->  (
( ph  /\  (
t  e.  T  |->  E )  e.  A )  ->  ( t  e.  T  |->  ( ( ( t  e.  T  |->  E ) `  t )  x.  ( ( X `
 ( m  + 
1 ) ) `  t ) ) )  e.  A ) )
1221213impib 1152 . . . . . . . . . 10  |-  ( ( ( X `  (
m  +  1 ) )  e.  A  /\  ph 
/\  ( t  e.  T  |->  E )  e.  A )  ->  (
t  e.  T  |->  ( ( ( t  e.  T  |->  E ) `  t )  x.  (
( X `  (
m  +  1 ) ) `  t ) ) )  e.  A
)
12391, 92, 100, 122syl3anc 1185 . . . . . . . . 9  |-  ( (
ph  /\  ( m  +  1 )  e.  ( 0 ... N
) )  ->  (
t  e.  T  |->  ( ( ( t  e.  T  |->  E ) `  t )  x.  (
( X `  (
m  +  1 ) ) `  t ) ) )  e.  A
)
12490, 123eqeltrrd 2513 . . . . . . . 8  |-  ( (
ph  /\  ( m  +  1 )  e.  ( 0 ... N
) )  ->  (
t  e.  T  |->  ( E  x.  ( ( X `  ( m  +  1 ) ) `
 t ) ) )  e.  A )
125124ad2antll 711 . . . . . . 7  |-  ( ( ( m  e.  NN0  ->  ( ( ph  /\  m  e.  ( 0 ... N ) )  ->  ( t  e.  T  |->  sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  t )
) )  e.  A
) )  /\  (
m  e.  NN0  /\  ( ph  /\  ( m  +  1 )  e.  ( 0 ... N
) ) ) )  ->  ( t  e.  T  |->  ( E  x.  ( ( X `  ( m  +  1
) ) `  t
) ) )  e.  A )
126 simprrl 742 . . . . . . 7  |-  ( ( ( m  e.  NN0  ->  ( ( ph  /\  m  e.  ( 0 ... N ) )  ->  ( t  e.  T  |->  sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  t )
) )  e.  A
) )  /\  (
m  e.  NN0  /\  ( ph  /\  ( m  +  1 )  e.  ( 0 ... N
) ) ) )  ->  ph )
127 simpl 445 . . . . . . . . . 10  |-  ( ( m  e.  NN0  /\  ( ph  /\  ( m  +  1 )  e.  ( 0 ... N
) ) )  ->  m  e.  NN0 )
128 simprl 734 . . . . . . . . . 10  |-  ( ( m  e.  NN0  /\  ( ph  /\  ( m  +  1 )  e.  ( 0 ... N
) ) )  ->  ph )
1291ad2antrl 710 . . . . . . . . . . . 12  |-  ( ( m  e.  NN0  /\  ( ph  /\  ( m  +  1 )  e.  ( 0 ... N
) ) )  ->  N  e.  NN )
130129nnnn0d 10279 . . . . . . . . . . 11  |-  ( ( m  e.  NN0  /\  ( ph  /\  ( m  +  1 )  e.  ( 0 ... N
) ) )  ->  N  e.  NN0 )
131 nn0re 10235 . . . . . . . . . . . . 13  |-  ( m  e.  NN0  ->  m  e.  RR )
132131adantr 453 . . . . . . . . . . . 12  |-  ( ( m  e.  NN0  /\  ( ph  /\  ( m  +  1 )  e.  ( 0 ... N
) ) )  ->  m  e.  RR )
133 peano2nn0 10265 . . . . . . . . . . . . . 14  |-  ( m  e.  NN0  ->  ( m  +  1 )  e. 
NN0 )
134133nn0red 10280 . . . . . . . . . . . . 13  |-  ( m  e.  NN0  ->  ( m  +  1 )  e.  RR )
135134adantr 453 . . . . . . . . . . . 12  |-  ( ( m  e.  NN0  /\  ( ph  /\  ( m  +  1 )  e.  ( 0 ... N
) ) )  -> 
( m  +  1 )  e.  RR )
1361nnred 10020 . . . . . . . . . . . . 13  |-  ( ph  ->  N  e.  RR )
137136ad2antrl 710 . . . . . . . . . . . 12  |-  ( ( m  e.  NN0  /\  ( ph  /\  ( m  +  1 )  e.  ( 0 ... N
) ) )  ->  N  e.  RR )
138 lep1 9854 . . . . . . . . . . . . 13  |-  ( m  e.  RR  ->  m  <_  ( m  +  1 ) )
139127, 131, 1383syl 19 . . . . . . . . . . . 12  |-  ( ( m  e.  NN0  /\  ( ph  /\  ( m  +  1 )  e.  ( 0 ... N
) ) )  ->  m  <_  ( m  + 
1 ) )
140 elfzle2 11066 . . . . . . . . . . . . 13  |-  ( ( m  +  1 )  e.  ( 0 ... N )  ->  (
m  +  1 )  <_  N )
141140ad2antll 711 . . . . . . . . . . . 12  |-  ( ( m  e.  NN0  /\  ( ph  /\  ( m  +  1 )  e.  ( 0 ... N
) ) )  -> 
( m  +  1 )  <_  N )
142132, 135, 137, 139, 141letrd 9232 . . . . . . . . . . 11  |-  ( ( m  e.  NN0  /\  ( ph  /\  ( m  +  1 )  e.  ( 0 ... N
) ) )  ->  m  <_  N )
143 elfz2nn0 11087 . . . . . . . . . . 11  |-  ( m  e.  ( 0 ... N )  <->  ( m  e.  NN0  /\  N  e. 
NN0  /\  m  <_  N ) )
144127, 130, 142, 143syl3anbrc 1139 . . . . . . . . . 10  |-  ( ( m  e.  NN0  /\  ( ph  /\  ( m  +  1 )  e.  ( 0 ... N
) ) )  ->  m  e.  ( 0 ... N ) )
145127, 128, 144jca32 523 . . . . . . . . 9  |-  ( ( m  e.  NN0  /\  ( ph  /\  ( m  +  1 )  e.  ( 0 ... N
) ) )  -> 
( m  e.  NN0  /\  ( ph  /\  m  e.  ( 0 ... N
) ) ) )
146145adantl 454 . . . . . . . 8  |-  ( ( ( m  e.  NN0  ->  ( ( ph  /\  m  e.  ( 0 ... N ) )  ->  ( t  e.  T  |->  sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  t )
) )  e.  A
) )  /\  (
m  e.  NN0  /\  ( ph  /\  ( m  +  1 )  e.  ( 0 ... N
) ) ) )  ->  ( m  e. 
NN0  /\  ( ph  /\  m  e.  ( 0 ... N ) ) ) )
147 pm3.31 434 . . . . . . . . 9  |-  ( ( m  e.  NN0  ->  ( ( ph  /\  m  e.  ( 0 ... N
) )  ->  (
t  e.  T  |->  sum_ i  e.  ( 0 ... m ) ( E  x.  ( ( X `  i ) `
 t ) ) )  e.  A ) )  ->  ( (
m  e.  NN0  /\  ( ph  /\  m  e.  ( 0 ... N
) ) )  -> 
( t  e.  T  |-> 
sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  t )
) )  e.  A
) )
148147adantr 453 . . . . . . . 8  |-  ( ( ( m  e.  NN0  ->  ( ( ph  /\  m  e.  ( 0 ... N ) )  ->  ( t  e.  T  |->  sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  t )
) )  e.  A
) )  /\  (
m  e.  NN0  /\  ( ph  /\  ( m  +  1 )  e.  ( 0 ... N
) ) ) )  ->  ( ( m  e.  NN0  /\  ( ph  /\  m  e.  ( 0 ... N ) ) )  ->  (
t  e.  T  |->  sum_ i  e.  ( 0 ... m ) ( E  x.  ( ( X `  i ) `
 t ) ) )  e.  A ) )
149146, 148mpd 15 . . . . . . 7  |-  ( ( ( m  e.  NN0  ->  ( ( ph  /\  m  e.  ( 0 ... N ) )  ->  ( t  e.  T  |->  sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  t )
) )  e.  A
) )  /\  (
m  e.  NN0  /\  ( ph  /\  ( m  +  1 )  e.  ( 0 ... N
) ) ) )  ->  ( t  e.  T  |->  sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  t )
) )  e.  A
)
150 fveq2 5731 . . . . . . . . . . . 12  |-  ( r  =  t  ->  (
( X `  (
m  +  1 ) ) `  r )  =  ( ( X `
 ( m  + 
1 ) ) `  t ) )
151150oveq2d 6100 . . . . . . . . . . 11  |-  ( r  =  t  ->  ( E  x.  ( ( X `  ( m  +  1 ) ) `
 r ) )  =  ( E  x.  ( ( X `  ( m  +  1
) ) `  t
) ) )
152151cbvmptv 4303 . . . . . . . . . 10  |-  ( r  e.  T  |->  ( E  x.  ( ( X `
 ( m  + 
1 ) ) `  r ) ) )  =  ( t  e.  T  |->  ( E  x.  ( ( X `  ( m  +  1
) ) `  t
) ) )
153152eleq1i 2501 . . . . . . . . 9  |-  ( ( r  e.  T  |->  ( E  x.  ( ( X `  ( m  +  1 ) ) `
 r ) ) )  e.  A  <->  ( t  e.  T  |->  ( E  x.  ( ( X `
 ( m  + 
1 ) ) `  t ) ) )  e.  A )
154 fveq1 5730 . . . . . . . . . . . . . . 15  |-  ( g  =  ( r  e.  T  |->  ( E  x.  ( ( X `  ( m  +  1
) ) `  r
) ) )  -> 
( g `  t
)  =  ( ( r  e.  T  |->  ( E  x.  ( ( X `  ( m  +  1 ) ) `
 r ) ) ) `  t ) )
155152fveq1i 5732 . . . . . . . . . . . . . . 15  |-  ( ( r  e.  T  |->  ( E  x.  ( ( X `  ( m  +  1 ) ) `
 r ) ) ) `  t )  =  ( ( t  e.  T  |->  ( E  x.  ( ( X `
 ( m  + 
1 ) ) `  t ) ) ) `
 t )
156154, 155syl6eq 2486 . . . . . . . . . . . . . 14  |-  ( g  =  ( r  e.  T  |->  ( E  x.  ( ( X `  ( m  +  1
) ) `  r
) ) )  -> 
( g `  t
)  =  ( ( t  e.  T  |->  ( E  x.  ( ( X `  ( m  +  1 ) ) `
 t ) ) ) `  t ) )
157156oveq2d 6100 . . . . . . . . . . . . 13  |-  ( g  =  ( r  e.  T  |->  ( E  x.  ( ( X `  ( m  +  1
) ) `  r
) ) )  -> 
( ( ( t  e.  T  |->  sum_ i  e.  ( 0 ... m
) ( E  x.  ( ( X `  i ) `  t
) ) ) `  t )  +  ( g `  t ) )  =  ( ( ( t  e.  T  |-> 
sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  t )
) ) `  t
)  +  ( ( t  e.  T  |->  ( E  x.  ( ( X `  ( m  +  1 ) ) `
 t ) ) ) `  t ) ) )
158157mpteq2dv 4299 . . . . . . . . . . . 12  |-  ( g  =  ( r  e.  T  |->  ( E  x.  ( ( X `  ( m  +  1
) ) `  r
) ) )  -> 
( t  e.  T  |->  ( ( ( t  e.  T  |->  sum_ i  e.  ( 0 ... m
) ( E  x.  ( ( X `  i ) `  t
) ) ) `  t )  +  ( g `  t ) ) )  =  ( t  e.  T  |->  ( ( ( t  e.  T  |->  sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  t )
) ) `  t
)  +  ( ( t  e.  T  |->  ( E  x.  ( ( X `  ( m  +  1 ) ) `
 t ) ) ) `  t ) ) ) )
159158eleq1d 2504 . . . . . . . . . . 11  |-  ( g  =  ( r  e.  T  |->  ( E  x.  ( ( X `  ( m  +  1
) ) `  r
) ) )  -> 
( ( t  e.  T  |->  ( ( ( t  e.  T  |->  sum_ i  e.  ( 0 ... m ) ( E  x.  ( ( X `  i ) `
 t ) ) ) `  t )  +  ( g `  t ) ) )  e.  A  <->  ( t  e.  T  |->  ( ( ( t  e.  T  |-> 
sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  t )
) ) `  t
)  +  ( ( t  e.  T  |->  ( E  x.  ( ( X `  ( m  +  1 ) ) `
 t ) ) ) `  t ) ) )  e.  A
) )
160159imbi2d 309 . . . . . . . . . 10  |-  ( g  =  ( r  e.  T  |->  ( E  x.  ( ( X `  ( m  +  1
) ) `  r
) ) )  -> 
( ( ( ph  /\  ( t  e.  T  |-> 
sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  t )
) )  e.  A
)  ->  ( t  e.  T  |->  ( ( ( t  e.  T  |-> 
sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  t )
) ) `  t
)  +  ( g `
 t ) ) )  e.  A )  <-> 
( ( ph  /\  ( t  e.  T  |-> 
sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  t )
) )  e.  A
)  ->  ( t  e.  T  |->  ( ( ( t  e.  T  |-> 
sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  t )
) ) `  t
)  +  ( ( t  e.  T  |->  ( E  x.  ( ( X `  ( m  +  1 ) ) `
 t ) ) ) `  t ) ) )  e.  A
) ) )
161 fveq2 5731 . . . . . . . . . . . . . . . . . 18  |-  ( r  =  t  ->  (
( X `  i
) `  r )  =  ( ( X `
 i ) `  t ) )
162161oveq2d 6100 . . . . . . . . . . . . . . . . 17  |-  ( r  =  t  ->  ( E  x.  ( ( X `  i ) `  r ) )  =  ( E  x.  (
( X `  i
) `  t )
) )
163162sumeq2sdv 12503 . . . . . . . . . . . . . . . 16  |-  ( r  =  t  ->  sum_ i  e.  ( 0 ... m
) ( E  x.  ( ( X `  i ) `  r
) )  =  sum_ i  e.  ( 0 ... m ) ( E  x.  ( ( X `  i ) `
 t ) ) )
164163cbvmptv 4303 . . . . . . . . . . . . . . 15  |-  ( r  e.  T  |->  sum_ i  e.  ( 0 ... m
) ( E  x.  ( ( X `  i ) `  r
) ) )  =  ( t  e.  T  |-> 
sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  t )
) )
165164eleq1i 2501 . . . . . . . . . . . . . 14  |-  ( ( r  e.  T  |->  sum_ i  e.  ( 0 ... m ) ( E  x.  ( ( X `  i ) `
 r ) ) )  e.  A  <->  ( t  e.  T  |->  sum_ i  e.  ( 0 ... m
) ( E  x.  ( ( X `  i ) `  t
) ) )  e.  A )
166 fveq1 5730 . . . . . . . . . . . . . . . . . . . 20  |-  ( f  =  ( r  e.  T  |->  sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  r )
) )  ->  (
f `  t )  =  ( ( r  e.  T  |->  sum_ i  e.  ( 0 ... m
) ( E  x.  ( ( X `  i ) `  r
) ) ) `  t ) )
167164fveq1i 5732 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( r  e.  T  |->  sum_ i  e.  ( 0 ... m ) ( E  x.  ( ( X `  i ) `
 r ) ) ) `  t )  =  ( ( t  e.  T  |->  sum_ i  e.  ( 0 ... m
) ( E  x.  ( ( X `  i ) `  t
) ) ) `  t )
168166, 167syl6eq 2486 . . . . . . . . . . . . . . . . . . 19  |-  ( f  =  ( r  e.  T  |->  sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  r )
) )  ->  (
f `  t )  =  ( ( t  e.  T  |->  sum_ i  e.  ( 0 ... m
) ( E  x.  ( ( X `  i ) `  t
) ) ) `  t ) )
169168oveq1d 6099 . . . . . . . . . . . . . . . . . 18  |-  ( f  =  ( r  e.  T  |->  sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  r )
) )  ->  (
( f `  t
)  +  ( g `
 t ) )  =  ( ( ( t  e.  T  |->  sum_ i  e.  ( 0 ... m ) ( E  x.  ( ( X `  i ) `
 t ) ) ) `  t )  +  ( g `  t ) ) )
170169mpteq2dv 4299 . . . . . . . . . . . . . . . . 17  |-  ( f  =  ( r  e.  T  |->  sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  r )
) )  ->  (
t  e.  T  |->  ( ( f `  t
)  +  ( g `
 t ) ) )  =  ( t  e.  T  |->  ( ( ( t  e.  T  |-> 
sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  t )
) ) `  t
)  +  ( g `
 t ) ) ) )
171170eleq1d 2504 . . . . . . . . . . . . . . . 16  |-  ( f  =  ( r  e.  T  |->  sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  r )
) )  ->  (
( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A  <->  ( t  e.  T  |->  ( ( ( t  e.  T  |->  sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  t )
) ) `  t
)  +  ( g `
 t ) ) )  e.  A ) )
172171imbi2d 309 . . . . . . . . . . . . . . 15  |-  ( f  =  ( r  e.  T  |->  sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  r )
) )  ->  (
( ( ph  /\  g  e.  A )  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A
)  <->  ( ( ph  /\  g  e.  A )  ->  ( t  e.  T  |->  ( ( ( t  e.  T  |->  sum_ i  e.  ( 0 ... m ) ( E  x.  ( ( X `  i ) `
 t ) ) ) `  t )  +  ( g `  t ) ) )  e.  A ) ) )
173 stoweidlem17.4 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
1741733com12 1158 . . . . . . . . . . . . . . . 16  |-  ( ( f  e.  A  /\  ph 
/\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
1751743expib 1157 . . . . . . . . . . . . . . 15  |-  ( f  e.  A  ->  (
( ph  /\  g  e.  A )  ->  (
t  e.  T  |->  ( ( f `  t
)  +  ( g `
 t ) ) )  e.  A ) )
176172, 175vtoclga 3019 . . . . . . . . . . . . . 14  |-  ( ( r  e.  T  |->  sum_ i  e.  ( 0 ... m ) ( E  x.  ( ( X `  i ) `
 r ) ) )  e.  A  -> 
( ( ph  /\  g  e.  A )  ->  ( t  e.  T  |->  ( ( ( t  e.  T  |->  sum_ i  e.  ( 0 ... m
) ( E  x.  ( ( X `  i ) `  t
) ) ) `  t )  +  ( g `  t ) ) )  e.  A
) )
177165, 176sylbir 206 . . . . . . . . . . . . 13  |-  ( ( t  e.  T  |->  sum_ i  e.  ( 0 ... m ) ( E  x.  ( ( X `  i ) `
 t ) ) )  e.  A  -> 
( ( ph  /\  g  e.  A )  ->  ( t  e.  T  |->  ( ( ( t  e.  T  |->  sum_ i  e.  ( 0 ... m
) ( E  x.  ( ( X `  i ) `  t
) ) ) `  t )  +  ( g `  t ) ) )  e.  A
) )
1781773impib 1152 . . . . . . . . . . . 12  |-  ( ( ( t  e.  T  |-> 
sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  t )
) )  e.  A  /\  ph  /\  g  e.  A )  ->  (
t  e.  T  |->  ( ( ( t  e.  T  |->  sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  t )
) ) `  t
)  +  ( g `
 t ) ) )  e.  A )
1791783com13 1159 . . . . . . . . . . 11  |-  ( ( g  e.  A  /\  ph 
/\  ( t  e.  T  |->  sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  t )
) )  e.  A
)  ->  ( t  e.  T  |->  ( ( ( t  e.  T  |-> 
sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  t )
) ) `  t
)  +  ( g `
 t ) ) )  e.  A )
1801793expib 1157 . . . . . . . . . 10  |-  ( g  e.  A  ->  (
( ph  /\  (
t  e.  T  |->  sum_ i  e.  ( 0 ... m ) ( E  x.  ( ( X `  i ) `
 t ) ) )  e.  A )  ->  ( t  e.  T  |->  ( ( ( t  e.  T  |->  sum_ i  e.  ( 0 ... m ) ( E  x.  ( ( X `  i ) `
 t ) ) ) `  t )  +  ( g `  t ) ) )  e.  A ) )
181160, 180vtoclga 3019 . . . . . . . . 9  |-  ( ( r  e.  T  |->  ( E  x.  ( ( X `  ( m  +  1 ) ) `
 r ) ) )  e.  A  -> 
( ( ph  /\  ( t  e.  T  |-> 
sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  t )
) )  e.  A
)  ->  ( t  e.  T  |->  ( ( ( t  e.  T  |-> 
sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  t )
) ) `  t
)  +  ( ( t  e.  T  |->  ( E  x.  ( ( X `  ( m  +  1 ) ) `
 t ) ) ) `  t ) ) )  e.  A
) )
182153, 181sylbir 206 . . . . . . . 8  |-  ( ( t  e.  T  |->  ( E  x.  ( ( X `  ( m  +  1 ) ) `
 t ) ) )  e.  A  -> 
( ( ph  /\  ( t  e.  T  |-> 
sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  t )
) )  e.  A
)  ->  ( t  e.  T  |->  ( ( ( t  e.  T  |-> 
sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  t )
) ) `  t
)  +  ( ( t  e.  T  |->  ( E  x.  ( ( X `  ( m  +  1 ) ) `
 t ) ) ) `  t ) ) )  e.  A
) )
1831823impib 1152 . . . . . . 7  |-  ( ( ( t  e.  T  |->  ( E  x.  (
( X `  (
m  +  1 ) ) `  t ) ) )  e.  A  /\  ph  /\  ( t  e.  T  |->  sum_ i  e.  ( 0 ... m
) ( E  x.  ( ( X `  i ) `  t
) ) )  e.  A )  ->  (
t  e.  T  |->  ( ( ( t  e.  T  |->  sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  t )
) ) `  t
)  +  ( ( t  e.  T  |->  ( E  x.  ( ( X `  ( m  +  1 ) ) `
 t ) ) ) `  t ) ) )  e.  A
)
184125, 126, 149, 183syl3anc 1185 . . . . . 6  |-  ( ( ( m  e.  NN0  ->  ( ( ph  /\  m  e.  ( 0 ... N ) )  ->  ( t  e.  T  |->  sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  t )
) )  e.  A
) )  /\  (
m  e.  NN0  /\  ( ph  /\  ( m  +  1 )  e.  ( 0 ... N
) ) ) )  ->  ( t  e.  T  |->  ( ( ( t  e.  T  |->  sum_ i  e.  ( 0 ... m ) ( E  x.  ( ( X `  i ) `
 t ) ) ) `  t )  +  ( ( t  e.  T  |->  ( E  x.  ( ( X `
 ( m  + 
1 ) ) `  t ) ) ) `
 t ) ) )  e.  A )
185 3anass 941 . . . . . . . . 9  |-  ( ( m  e.  NN0  /\  ph 
/\  ( m  + 
1 )  e.  ( 0 ... N ) )  <->  ( m  e. 
NN0  /\  ( ph  /\  ( m  +  1 )  e.  ( 0 ... N ) ) ) )
186185biimpri 199 . . . . . . . 8  |-  ( ( m  e.  NN0  /\  ( ph  /\  ( m  +  1 )  e.  ( 0 ... N
) ) )  -> 
( m  e.  NN0  /\ 
ph  /\  ( m  +  1 )  e.  ( 0 ... N
) ) )
187186adantl 454 . . . . . . 7  |-  ( ( ( m  e.  NN0  ->  ( ( ph  /\  m  e.  ( 0 ... N ) )  ->  ( t  e.  T  |->  sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  t )
) )  e.  A
) )  /\  (
m  e.  NN0  /\  ( ph  /\  ( m  +  1 )  e.  ( 0 ... N
) ) ) )  ->  ( m  e. 
NN0  /\  ph  /\  (
m  +  1 )  e.  ( 0 ... N ) ) )
188 nfv 1630 . . . . . . . . . 10  |-  F/ t  m  e.  NN0
189 nfv 1630 . . . . . . . . . 10  |-  F/ t ( m  +  1 )  e.  ( 0 ... N )
190188, 41, 189nf3an 1850 . . . . . . . . 9  |-  F/ t ( m  e.  NN0  /\ 
ph  /\  ( m  +  1 )  e.  ( 0 ... N
) )
191 simpr 449 . . . . . . . . . . . 12  |-  ( ( ( m  e.  NN0  /\ 
ph  /\  ( m  +  1 )  e.  ( 0 ... N
) )  /\  t  e.  T )  ->  t  e.  T )
192 fzfid 11317 . . . . . . . . . . . . 13  |-  ( ( ( m  e.  NN0  /\ 
ph  /\  ( m  +  1 )  e.  ( 0 ... N
) )  /\  t  e.  T )  ->  (
0 ... m )  e. 
Fin )
193423ad2ant2 980 . . . . . . . . . . . . . . . 16  |-  ( ( m  e.  NN0  /\  ph 
/\  ( m  + 
1 )  e.  ( 0 ... N ) )  ->  E  e.  RR )
194193adantr 453 . . . . . . . . . . . . . . 15  |-  ( ( ( m  e.  NN0  /\ 
ph  /\  ( m  +  1 )  e.  ( 0 ... N
) )  /\  t  e.  T )  ->  E  e.  RR )
195194adantr 453 . . . . . . . . . . . . . 14  |-  ( ( ( ( m  e. 
NN0  /\  ph  /\  (
m  +  1 )  e.  ( 0 ... N ) )  /\  t  e.  T )  /\  i  e.  (
0 ... m ) )  ->  E  e.  RR )
196 fzelp1 11104 . . . . . . . . . . . . . . . . 17  |-  ( i  e.  ( 0 ... m )  ->  i  e.  ( 0 ... (
m  +  1 ) ) )
197196anim2i 554 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( m  e. 
NN0  /\  ph  /\  (
m  +  1 )  e.  ( 0 ... N ) )  /\  t  e.  T )  /\  i  e.  (
0 ... m ) )  ->  ( ( ( m  e.  NN0  /\  ph 
/\  ( m  + 
1 )  e.  ( 0 ... N ) )  /\  t  e.  T )  /\  i  e.  ( 0 ... (
m  +  1 ) ) ) )
198 an32 775 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( m  e. 
NN0  /\  ph  /\  (
m  +  1 )  e.  ( 0 ... N ) )  /\  t  e.  T )  /\  i  e.  (
0 ... ( m  + 
1 ) ) )  <-> 
( ( ( m  e.  NN0  /\  ph  /\  ( m  +  1
)  e.  ( 0 ... N ) )  /\  i  e.  ( 0 ... ( m  +  1 ) ) )  /\  t  e.  T ) )
199197, 198sylib 190 . . . . . . . . . . . . . . 15  |-  ( ( ( ( m  e. 
NN0  /\  ph  /\  (
m  +  1 )  e.  ( 0 ... N ) )  /\  t  e.  T )  /\  i  e.  (
0 ... m ) )  ->  ( ( ( m  e.  NN0  /\  ph 
/\  ( m  + 
1 )  e.  ( 0 ... N ) )  /\  i  e.  ( 0 ... (
m  +  1 ) ) )  /\  t  e.  T ) )
200453ad2ant2 980 . . . . . . . . . . . . . . . . . . 19  |-  ( ( m  e.  NN0  /\  ph 
/\  ( m  + 
1 )  e.  ( 0 ... N ) )  ->  X :
( 0 ... N
) --> A )
201200adantr 453 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( m  e.  NN0  /\ 
ph  /\  ( m  +  1 )  e.  ( 0 ... N
) )  /\  i  e.  ( 0 ... (
m  +  1 ) ) )  ->  X : ( 0 ... N ) --> A )
202 elfzuz3 11061 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( m  +  1 )  e.  ( 0 ... N )  ->  N  e.  ( ZZ>= `  ( m  +  1 ) ) )
203 fzss2 11097 . . . . . . . . . . . . . . . . . . . . 21  |-  ( N  e.  ( ZZ>= `  (
m  +  1 ) )  ->  ( 0 ... ( m  + 
1 ) )  C_  ( 0 ... N
) )
204202, 203syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( m  +  1 )  e.  ( 0 ... N )  ->  (
0 ... ( m  + 
1 ) )  C_  ( 0 ... N
) )
205204sselda 3350 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( m  +  1 )  e.  ( 0 ... N )  /\  i  e.  ( 0 ... ( m  + 
1 ) ) )  ->  i  e.  ( 0 ... N ) )
2062053ad2antl3 1122 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( m  e.  NN0  /\ 
ph  /\  ( m  +  1 )  e.  ( 0 ... N
) )  /\  i  e.  ( 0 ... (
m  +  1 ) ) )  ->  i  e.  ( 0 ... N
) )
207201, 206ffvelrnd 5874 . . . . . . . . . . . . . . . . 17  |-  ( ( ( m  e.  NN0  /\ 
ph  /\  ( m  +  1 )  e.  ( 0 ... N
) )  /\  i  e.  ( 0 ... (
m  +  1 ) ) )  ->  ( X `  i )  e.  A )
208 simpl2 962 . . . . . . . . . . . . . . . . 17  |-  ( ( ( m  e.  NN0  /\ 
ph  /\  ( m  +  1 )  e.  ( 0 ... N
) )  /\  i  e.  ( 0 ... (
m  +  1 ) ) )  ->  ph )
209 feq1 5579 . . . . . . . . . . . . . . . . . . 19  |-  ( f  =  ( X `  i )  ->  (
f : T --> RR  <->  ( X `  i ) : T --> RR ) )
210209imbi2d 309 . . . . . . . . . . . . . . . . . 18  |-  ( f  =  ( X `  i )  ->  (
( ph  ->  f : T --> RR )  <->  ( ph  ->  ( X `  i
) : T --> RR ) ) )
211210, 63vtoclga 3019 . . . . . . . . . . . . . . . . 17  |-  ( ( X `  i )  e.  A  ->  ( ph  ->  ( X `  i ) : T --> RR ) )
212207, 208, 211sylc 59 . . . . . . . . . . . . . . . 16  |-  ( ( ( m  e.  NN0  /\ 
ph  /\  ( m  +  1 )  e.  ( 0 ... N
) )  /\  i  e.  ( 0 ... (
m  +  1 ) ) )  ->  ( X `  i ) : T --> RR )
213212fnvinran 27675 . . . . . . . . . . . . . . 15  |-  ( ( ( ( m  e. 
NN0  /\  ph  /\  (
m  +  1 )  e.  ( 0 ... N ) )  /\  i  e.  ( 0 ... ( m  + 
1 ) ) )  /\  t  e.  T
)  ->  ( ( X `  i ) `  t )  e.  RR )
214199, 213syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ( m  e. 
NN0  /\  ph  /\  (
m  +  1 )  e.  ( 0 ... N ) )  /\  t  e.  T )  /\  i  e.  (
0 ... m ) )  ->  ( ( X `
 i ) `  t )  e.  RR )
215195, 214remulcld 9121 . . . . . . . . . . . . 13  |-  ( ( ( ( m  e. 
NN0  /\  ph  /\  (
m  +  1 )  e.  ( 0 ... N ) )  /\  t  e.  T )  /\  i  e.  (
0 ... m ) )  ->  ( E  x.  ( ( X `  i ) `  t
) )  e.  RR )
216192, 215fsumrecl 12533 . . . . . . . . . . . 12  |-  ( ( ( m  e.  NN0  /\ 
ph  /\  ( m  +  1 )  e.  ( 0 ... N
) )  /\  t  e.  T )  ->  sum_ i  e.  ( 0 ... m
) ( E  x.  ( ( X `  i ) `  t
) )  e.  RR )
217 eqid 2438 . . . . . . . . . . . . 13  |-  ( t  e.  T  |->  sum_ i  e.  ( 0 ... m
) ( E  x.  ( ( X `  i ) `  t
) ) )  =  ( t  e.  T  |-> 
sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  t )
) )
218217fvmpt2 5815 . . . . . . . . . . . 12  |-  ( ( t  e.  T  /\  sum_ i  e.  ( 0 ... m ) ( E  x.  ( ( X `  i ) `
 t ) )  e.  RR )  -> 
( ( t  e.  T  |->  sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  t )
) ) `  t
)  =  sum_ i  e.  ( 0 ... m
) ( E  x.  ( ( X `  i ) `  t
) ) )
219191, 216, 218syl2anc 644 . . . . . . . . . . 11  |-  ( ( ( m  e.  NN0  /\ 
ph  /\  ( m  +  1 )  e.  ( 0 ... N
) )  /\  t  e.  T )  ->  (
( t  e.  T  |-> 
sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  t )
) ) `  t
)  =  sum_ i  e.  ( 0 ... m
) ( E  x.  ( ( X `  i ) `  t
) ) )
220219oveq1d 6099 . . . . . . . . . 10  |-  ( ( ( m  e.  NN0  /\ 
ph  /\  ( m  +  1 )  e.  ( 0 ... N
) )  /\  t  e.  T )  ->  (
( ( t  e.  T  |->  sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  t )
) ) `  t
)  +  ( E  x.  ( ( X `
 ( m  + 
1 ) ) `  t ) ) )  =  ( sum_ i  e.  ( 0 ... m
) ( E  x.  ( ( X `  i ) `  t
) )  +  ( E  x.  ( ( X `  ( m  +  1 ) ) `
 t ) ) ) )
221 3simpc 957 . . . . . . . . . . . . . . . 16  |-  ( ( m  e.  NN0  /\  ph 
/\  ( m  + 
1 )  e.  ( 0 ... N ) )  ->  ( ph  /\  ( m  +  1 )  e.  ( 0 ... N ) ) )
222221adantr 453 . . . . . . . . . . . . . . 15  |-  ( ( ( m  e.  NN0  /\ 
ph  /\  ( m  +  1 )  e.  ( 0 ... N
) )  /\  t  e.  T )  ->  ( ph  /\  ( m  + 
1 )  e.  ( 0 ... N ) ) )
223 feq1 5579 . . . . . . . . . . . . . . . . . 18  |-  ( f  =  ( X `  ( m  +  1
) )  ->  (
f : T --> RR  <->  ( X `  ( m  +  1 ) ) : T --> RR ) )
224223imbi2d 309 . . . . . . . . . . . . . . . . 17  |-  ( f  =  ( X `  ( m  +  1
) )  ->  (
( ph  ->  f : T --> RR )  <->  ( ph  ->  ( X `  (
m  +  1 ) ) : T --> RR ) ) )
225224, 63vtoclga 3019 . . . . . . . . . . . . . . . 16  |-  ( ( X `  ( m  +  1 ) )  e.  A  ->  ( ph  ->  ( X `  ( m  +  1
) ) : T --> RR ) )
22691, 92, 225sylc 59 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( m  +  1 )  e.  ( 0 ... N
) )  ->  ( X `  ( m  +  1 ) ) : T --> RR )
227222, 226syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( m  e.  NN0  /\ 
ph  /\  ( m  +  1 )  e.  ( 0 ... N
) )  /\  t  e.  T )  ->  ( X `  ( m  +  1 ) ) : T --> RR )
228227, 191ffvelrnd 5874 . . . . . . . . . . . . 13  |-  ( ( ( m  e.  NN0  /\ 
ph  /\  ( m  +  1 )  e.  ( 0 ... N
) )  /\  t  e.  T )  ->  (
( X `  (
m  +  1 ) ) `  t )  e.  RR )
229194, 228remulcld 9121 . . . . . . . . . . . 12  |-  ( ( ( m  e.  NN0  /\ 
ph  /\  ( m  +  1 )  e.  ( 0 ... N
) )  /\  t  e.  T )  ->  ( E  x.  ( ( X `  ( m  +  1 ) ) `
 t ) )  e.  RR )
230 eqid 2438 . . . . . . . . . . . . 13  |-  ( t  e.  T  |->  ( E  x.  ( ( X `
 ( m  + 
1 ) ) `  t ) ) )  =  ( t  e.  T  |->  ( E  x.  ( ( X `  ( m  +  1
) ) `  t
) ) )
231230fvmpt2 5815 . . . . . . . . . . . 12  |-  ( ( t  e.  T  /\  ( E  x.  (
( X `  (
m  +  1 ) ) `  t ) )  e.  RR )  ->  ( ( t  e.  T  |->  ( E  x.  ( ( X `
 ( m  + 
1 ) ) `  t ) ) ) `
 t )  =  ( E  x.  (
( X `  (
m  +  1 ) ) `  t ) ) )
232191, 229, 231syl2anc 644 . . . . . . . . . . 11  |-  ( ( ( m  e.  NN0  /\ 
ph  /\  ( m  +  1 )  e.  ( 0 ... N
) )  /\  t  e.  T )  ->  (
( t  e.  T  |->  ( E  x.  (
( X `  (
m  +  1 ) ) `  t ) ) ) `  t
)  =  ( E  x.  ( ( X `
 ( m  + 
1 ) ) `  t ) ) )
233232oveq2d 6100 . . . . . . . . . 10  |-  ( ( ( m  e.  NN0  /\ 
ph  /\  ( m  +  1 )  e.  ( 0 ... N
) )  /\  t  e.  T )  ->  (
( ( t  e.  T  |->  sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  t )
) ) `  t
)  +  ( ( t  e.  T  |->  ( E  x.  ( ( X `  ( m  +  1 ) ) `
 t ) ) ) `  t ) )  =  ( ( ( t  e.  T  |-> 
sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  t )
) ) `  t
)  +  ( E  x.  ( ( X `
 ( m  + 
1 ) ) `  t ) ) ) )
234 elfzuz 11060 . . . . . . . . . . . . . 14  |-  ( ( m  +  1 )  e.  ( 0 ... N )  ->  (
m  +  1 )  e.  ( ZZ>= `  0
) )
2352343ad2ant3 981 . . . . . . . . . . . . 13  |-  ( ( m  e.  NN0  /\  ph 
/\  ( m  + 
1 )  e.  ( 0 ... N ) )  ->  ( m  +  1 )  e.  ( ZZ>= `  0 )
)
236235adantr 453 . . . . . . . . . . . 12  |-  ( ( ( m  e.  NN0  /\ 
ph  /\  ( m  +  1 )  e.  ( 0 ... N
) )  /\  t  e.  T )  ->  (
m  +  1 )  e.  ( ZZ>= `  0
) )
237194adantr 453 . . . . . . . . . . . . 13  |-  ( ( ( ( m  e. 
NN0  /\  ph  /\  (
m  +  1 )  e.  ( 0 ... N ) )  /\  t  e.  T )  /\  i  e.  (
0 ... ( m  + 
1 ) ) )  ->  E  e.  RR )
238213an32s 781 . . . . . . . . . . . . 13  |-  ( ( ( ( m  e. 
NN0  /\  ph  /\  (
m  +  1 )  e.  ( 0 ... N ) )  /\  t  e.  T )  /\  i  e.  (
0 ... ( m  + 
1 ) ) )  ->  ( ( X `
 i ) `  t )  e.  RR )
239 remulcl 9080 . . . . . . . . . . . . . 14  |-  ( ( E  e.  RR  /\  ( ( X `  i ) `  t
)  e.  RR )  ->  ( E  x.  ( ( X `  i ) `  t
) )  e.  RR )
240239recnd 9119 . . . . . . . . . . . . 13  |-  ( ( E  e.  RR  /\  ( ( X `  i ) `  t
)  e.  RR )  ->  ( E  x.  ( ( X `  i ) `  t
) )  e.  CC )
241237, 238, 240syl2anc 644 . . . . . . . . . . . 12  |-  ( ( ( ( m  e. 
NN0  /\  ph  /\  (
m  +  1 )  e.  ( 0 ... N ) )  /\  t  e.  T )  /\  i  e.  (
0 ... ( m  + 
1 ) ) )  ->  ( E  x.  ( ( X `  i ) `  t
) )  e.  CC )
242 fveq2 5731 . . . . . . . . . . . . . 14  |-  ( i  =  ( m  + 
1 )  ->  ( X `  i )  =  ( X `  ( m  +  1
) ) )
243242fveq1d 5733 . . . . . . . . . . . . 13  |-  ( i  =  ( m  + 
1 )  ->  (
( X `  i
) `  t )  =  ( ( X `
 ( m  + 
1 ) ) `  t ) )
244243oveq2d 6100 . . . . . . . . . . . 12  |-  ( i  =  ( m  + 
1 )  ->  ( E  x.  ( ( X `  i ) `  t ) )  =  ( E  x.  (
( X `  (
m  +  1 ) ) `  t ) ) )
245236, 241, 244fsumm1 12542 . . . . . . . . . . 11  |-  ( ( ( m  e.  NN0  /\ 
ph  /\  ( m  +  1 )  e.  ( 0 ... N
) )  /\  t  e.  T )  ->  sum_ i  e.  ( 0 ... (
m  +  1 ) ) ( E  x.  ( ( X `  i ) `  t
) )  =  (
sum_ i  e.  ( 0 ... ( ( m  +  1 )  -  1 ) ) ( E  x.  (
( X `  i
) `  t )
)  +  ( E  x.  ( ( X `
 ( m  + 
1 ) ) `  t ) ) ) )
246 nn0cn 10236 . . . . . . . . . . . . . . . . 17  |-  ( m  e.  NN0  ->  m  e.  CC )
2472463ad2ant1 979 . . . . . . . . . . . . . . . 16  |-  ( ( m  e.  NN0  /\  ph 
/\  ( m  + 
1 )  e.  ( 0 ... N ) )  ->  m  e.  CC )
248247adantr 453 . . . . . . . . . . . . . . 15  |-  ( ( ( m  e.  NN0  /\ 
ph  /\  ( m  +  1 )  e.  ( 0 ... N
) )  /\  t  e.  T )  ->  m  e.  CC )
249 ax-1cn 9053 . . . . . . . . . . . . . . . 16  |-  1  e.  CC
250249a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( ( m  e.  NN0  /\ 
ph  /\  ( m  +  1 )  e.  ( 0 ... N
) )  /\  t  e.  T )  ->  1  e.  CC )
251248, 250pncand 9417 . . . . . . . . . . . . . 14  |-  ( ( ( m  e.  NN0  /\ 
ph  /\  ( m  +  1 )  e.  ( 0 ... N
) )  /\  t  e.  T )  ->  (
( m  +  1 )  -  1 )  =  m )
252251oveq2d 6100 . . . . . . . . . . . . 13  |-  ( ( ( m  e.  NN0  /\ 
ph  /\  ( m  +  1 )  e.  ( 0 ... N
) )  /\  t  e.  T )  ->  (
0 ... ( ( m  +  1 )  - 
1 ) )  =  ( 0 ... m
) )
253252sumeq1d 12500 . . . . . . . . . . . 12  |-  ( ( ( m  e.  NN0  /\ 
ph  /\  ( m  +  1 )  e.  ( 0 ... N
) )  /\  t  e.  T )  ->  sum_ i  e.  ( 0 ... (
( m  +  1 )  -  1 ) ) ( E  x.  ( ( X `  i ) `  t
) )  =  sum_ i  e.  ( 0 ... m ) ( E  x.  ( ( X `  i ) `
 t ) ) )
254253oveq1d 6099 . . . . . . . . . . 11  |-  ( ( ( m  e.  NN0  /\ 
ph  /\  ( m  +  1 )  e.  ( 0 ... N
) )  /\  t  e.  T )  ->  ( sum_ i  e.  ( 0 ... ( ( m  +  1 )  - 
1 ) ) ( E  x.  ( ( X `  i ) `
 t ) )  +  ( E  x.  ( ( X `  ( m  +  1
) ) `  t
) ) )  =  ( sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  t )
)  +  ( E  x.  ( ( X `
 ( m  + 
1 ) ) `  t ) ) ) )
255245, 254eqtrd 2470 . . . . . . . . . 10  |-  ( ( ( m  e.  NN0  /\ 
ph  /\  ( m  +  1 )  e.  ( 0 ... N
) )  /\  t  e.  T )  ->  sum_ i  e.  ( 0 ... (
m  +  1 ) ) ( E  x.  ( ( X `  i ) `  t
) )  =  (
sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  t )
)  +  ( E  x.  ( ( X `
 ( m  + 
1 ) ) `  t ) ) ) )
256220, 233, 2553eqtr4rd 2481 . . . . . . . . 9  |-  ( ( ( m  e.  NN0  /\ 
ph  /\  ( m  +  1 )  e.  ( 0 ... N
) )  /\  t  e.  T )  ->  sum_ i  e.  ( 0 ... (
m  +  1 ) ) ( E  x.  ( ( X `  i ) `  t
) )  =  ( ( ( t  e.  T  |->  sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  t )
) ) `  t
)  +  ( ( t  e.  T  |->  ( E  x.  ( ( X `  ( m  +  1 ) ) `
 t ) ) ) `  t ) ) )
257190, 256mpteq2da 4297 . . . . . . . 8  |-  ( ( m  e.  NN0  /\  ph 
/\  ( m  + 
1 )  e.  ( 0 ... N ) )  ->  ( t  e.  T  |->  sum_ i  e.  ( 0 ... (
m  +  1 ) ) ( E  x.  ( ( X `  i ) `  t
) ) )  =  ( t  e.  T  |->  ( ( ( t  e.  T  |->  sum_ i  e.  ( 0 ... m
) ( E  x.  ( ( X `  i ) `  t
) ) ) `  t )  +  ( ( t  e.  T  |->  ( E  x.  (
( X `  (
m  +  1 ) ) `  t ) ) ) `  t
) ) ) )
258257eleq1d 2504 . . . . . . 7  |-  ( ( m  e.  NN0  /\  ph 
/\  ( m  + 
1 )  e.  ( 0 ... N ) )  ->  ( (
t  e.  T  |->  sum_ i  e.  ( 0 ... ( m  + 
1 ) ) ( E  x.  ( ( X `  i ) `
 t ) ) )  e.  A  <->  ( t  e.  T  |->  ( ( ( t  e.  T  |-> 
sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  t )
) ) `  t
)  +  ( ( t  e.  T  |->  ( E  x.  ( ( X `  ( m  +  1 ) ) `
 t ) ) ) `  t ) ) )  e.  A
) )
259187, 258syl 16 . . . . . 6  |-  ( ( ( m  e.  NN0  ->  ( ( ph  /\  m  e.  ( 0 ... N ) )  ->  ( t  e.  T  |->  sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  t )
) )  e.  A
) )  /\  (
m  e.  NN0  /\  ( ph  /\  ( m  +  1 )  e.  ( 0 ... N
) ) ) )  ->  ( ( t  e.  T  |->  sum_ i  e.  ( 0 ... (
m  +  1 ) ) ( E  x.  ( ( X `  i ) `  t
) ) )  e.  A  <->  ( t  e.  T  |->  ( ( ( t  e.  T  |->  sum_ i  e.  ( 0 ... m ) ( E  x.  ( ( X `  i ) `
 t ) ) ) `  t )  +  ( ( t  e.  T  |->  ( E  x.  ( ( X `
 ( m  + 
1 ) ) `  t ) ) ) `
 t ) ) )  e.  A ) )
260184, 259mpbird 225 . . . . 5  |-  ( ( ( m  e.  NN0  ->  ( ( ph  /\  m  e.  ( 0 ... N ) )  ->  ( t  e.  T  |->  sum_ i  e.  ( 0 ... m ) ( E  x.  (
( X `  i
) `  t )
) )  e.  A
) )  /\  (
m  e.  NN0  /\  ( ph  /\  ( m  +  1 )  e.  ( 0 ... N
) ) ) )  ->  ( t  e.  T  |->  sum_ i  e.  ( 0 ... ( m  +  1 ) ) ( E  x.  (
( X `  i
) `  t )
) )  e.  A
)
261260exp32 590 . . . 4  |-  ( ( m  e.  NN0  ->  ( ( ph  /\  m  e.  ( 0 ... N
) )  ->  (
t  e.  T  |->  sum_ i  e.  ( 0 ... m ) ( E  x.  ( ( X `  i ) `
 t ) ) )  e.  A ) )  ->  ( m  e.  NN0  ->  ( ( ph  /\  ( m  + 
1 )  e.  ( 0 ... N ) )  ->  ( t  e.  T  |->  sum_ i  e.  ( 0 ... (
m  +  1 ) ) ( E  x.  ( ( X `  i ) `  t
) ) )  e.  A ) ) )
262261pm2.86i 95 . . 3  |-  ( m  e.  NN0  ->  ( ( ( ph  /\  m  e.  ( 0 ... N
) )  ->  (
t  e.  T  |->  sum_ i  e.  ( 0 ... m ) ( E  x.  ( ( X `  i ) `
 t ) ) )  e.  A )  ->  ( ( ph  /\  ( m  +  1 )  e.  ( 0 ... N ) )  ->  ( t  e.  T  |->  sum_ i  e.  ( 0 ... ( m  +  1 ) ) ( E  x.  (
( X `  i
) `  t )
) )  e.  A
) ) )
26314, 21, 28, 35, 80, 262nn0ind 10371 . 2  |-  ( N  e.  NN0  ->  ( (
ph  /\  N  e.  ( 0 ... N
) )  ->  (
t  e.  T  |->  sum_ i  e.  ( 0 ... N ) ( E  x.  ( ( X `  i ) `
 t ) ) )  e.  A ) )
2642, 7, 263sylc 59 1  |-  ( ph  ->  ( t  e.  T  |-> 
sum_ i  e.  ( 0 ... N ) ( E  x.  (
( X `  i
) `  t )
) )  e.  A
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937   F/wnf 1554    = wceq 1653    e. wcel 1726    C_ wss 3322   {csn 3816   class class class wbr 4215    e. cmpt 4269   -->wf 5453   ` cfv 5457  (class class class)co 6084   CCcc 8993   RRcr 8994   0cc0 8995   1c1 8996    + caddc 8998    x. cmul 9000    < clt 9125    <_ cle 9126    - cmin 9296   NNcn 10005   NN0cn0 10226   ZZcz 10287   ZZ>=cuz 10493   ...cfz 11048   sum_csu 12484
This theorem is referenced by:  stoweidlem60  27799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-inf2 7599  ax-cnex 9051  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-mulcom 9059  ax-addass 9060  ax-mulass 9061  ax-distr 9062  ax-i2m1 9063  ax-1ne0 9064  ax-1rid 9065  ax-rnegex 9066  ax-rrecex 9067  ax-cnre 9068  ax-pre-lttri 9069  ax-pre-lttrn 9070  ax-pre-ltadd 9071  ax-pre-mulgt0 9072  ax-pre-sup 9073
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-se 4545  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-isom 5466  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-1st 6352  df-2nd 6353  df-riota 6552  df-recs 6636  df-rdg 6671  df-1o 6727  df-oadd 6731  df-er 6908  df-en 7113  df-dom 7114  df-sdom 7115  df-fin 7116  df-sup 7449  df-oi 7482  df-card 7831  df-pnf 9127  df-mnf 9128  df-xr 9129  df-ltxr 9130  df-le 9131  df-sub 9298  df-neg 9299  df-div 9683  df-nn 10006  df-2 10063  df-3 10064  df-n0 10227  df-z 10288  df-uz 10494  df-rp 10618  df-fz 11049  df-fzo 11141  df-seq 11329  df-exp 11388  df-hash 11624  df-cj 11909  df-re 11910  df-im 11911  df-sqr 12045  df-abs 12046  df-clim 12287  df-sum 12485
  Copyright terms: Public domain W3C validator