Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem21 Structured version   Unicode version

Theorem stoweidlem21 27746
 Description: Once the Stone Weierstrass theorem has been proven for approximating nonnegative functions, then this lemma is used to extend the result to functions with (possibly) negative values. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem21.1
stoweidlem21.2
stoweidlem21.3
stoweidlem21.4
stoweidlem21.5
stoweidlem21.6
stoweidlem21.7
stoweidlem21.8
stoweidlem21.9
stoweidlem21.10
stoweidlem21.11
stoweidlem21.12
Assertion
Ref Expression
stoweidlem21
Distinct variable groups:   ,,,   ,,   ,,   ,,   ,,   ,,   ,,   ,   ,,   ,   ,   ,
Allowed substitution hints:   ()   ()   (,)   (,)   (,)   (,)   (,)

Proof of Theorem stoweidlem21
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 stoweidlem21.5 . . . 4
2 stoweidlem21.4 . . . . 5
3 stoweidlem21.7 . . . . . . . 8
4 fvconst2g 5945 . . . . . . . 8
53, 4sylan 458 . . . . . . 7
65eqcomd 2441 . . . . . 6
76oveq2d 6097 . . . . 5
82, 7mpteq2da 4294 . . . 4
91, 8syl5eq 2480 . . 3
10 stoweidlem21.11 . . . 4
11 fconstmpt 4921 . . . . . 6
12 stoweidlem21.3 . . . . . . 7
13 nfcv 2572 . . . . . . 7
14 eqidd 2437 . . . . . . 7
1512, 13, 14cbvmpt 4299 . . . . . 6
1611, 15eqtri 2456 . . . . 5
1712nfeq2 2583 . . . . . . . . . 10
18 simpl 444 . . . . . . . . . 10
1917, 18mpteq2da 4294 . . . . . . . . 9
2019eleq1d 2502 . . . . . . . 8
2120imbi2d 308 . . . . . . 7
22 stoweidlem21.9 . . . . . . . 8
2322expcom 425 . . . . . . 7
2421, 23vtoclga 3017 . . . . . 6
253, 24mpcom 34 . . . . 5
2616, 25syl5eqel 2520 . . . 4
27 stoweidlem21.8 . . . . 5
28 stoweidlem21.2 . . . . 5
29 nfcv 2572 . . . . . 6
3012nfsn 3866 . . . . . 6
3129, 30nfxp 4904 . . . . 5
3227, 28, 31stoweidlem8 27733 . . . 4
3310, 26, 32mpd3an23 1281 . . 3
349, 33eqeltrd 2510 . 2
35 simpr 448 . . . . . . . . 9
36 stoweidlem21.10 . . . . . . . . . . . 12
37 feq1 5576 . . . . . . . . . . . . 13
3837rspccva 3051 . . . . . . . . . . . 12
3936, 10, 38syl2anc 643 . . . . . . . . . . 11
4039fnvinran 27661 . . . . . . . . . 10
413adantr 452 . . . . . . . . . 10
4240, 41readdcld 9115 . . . . . . . . 9
431fvmpt2 5812 . . . . . . . . 9
4435, 42, 43syl2anc 643 . . . . . . . 8
4544oveq1d 6096 . . . . . . 7
4640recnd 9114 . . . . . . . 8
47 stoweidlem21.6 . . . . . . . . . 10
4847fnvinran 27661 . . . . . . . . 9
4948recnd 9114 . . . . . . . 8
503recnd 9114 . . . . . . . . 9
5150adantr 452 . . . . . . . 8
5246, 49, 51subsub3d 9441 . . . . . . 7
5345, 52eqtr4d 2471 . . . . . 6
5453fveq2d 5732 . . . . 5
55 stoweidlem21.12 . . . . . 6
5655r19.21bi 2804 . . . . 5
5754, 56eqbrtrd 4232 . . . 4
5857ex 424 . . 3
592, 58ralrimi 2787 . 2
60 stoweidlem21.1 . . . . 5
6160nfeq2 2583 . . . 4
62 fveq1 5727 . . . . . . 7
6362oveq1d 6096 . . . . . 6
6463fveq2d 5732 . . . . 5
6564breq1d 4222 . . . 4
6661, 65ralbid 2723 . . 3
6766rspcev 3052 . 2
6834, 59, 67syl2anc 643 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 359   w3a 936  wnf 1553   wceq 1652   wcel 1725  wnfc 2559  wral 2705  wrex 2706  csn 3814   class class class wbr 4212   cmpt 4266   cxp 4876  wf 5450  cfv 5454  (class class class)co 6081  cc 8988  cr 8989   caddc 8993   clt 9120   cmin 9291  cabs 12039 This theorem is referenced by:  stoweidlem62  27787 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-po 4503  df-so 4504  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-riota 6549  df-er 6905  df-en 7110  df-dom 7111  df-sdom 7112  df-pnf 9122  df-mnf 9123  df-ltxr 9125  df-sub 9293
 Copyright terms: Public domain W3C validator