Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem32 Structured version   Unicode version

Theorem stoweidlem32 27748
Description: If a set A of real functions from a common domain T is a subalgebra and it contains constants, then it is closed under the sum of a finite number of functions, indexed by G and finally scaled by a real Y. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem32.1  |-  F/ t
ph
stoweidlem32.2  |-  P  =  ( t  e.  T  |->  ( Y  x.  sum_ i  e.  ( 1 ... M ) ( ( G `  i
) `  t )
) )
stoweidlem32.3  |-  F  =  ( t  e.  T  |-> 
sum_ i  e.  ( 1 ... M ) ( ( G `  i ) `  t
) )
stoweidlem32.4  |-  H  =  ( t  e.  T  |->  Y )
stoweidlem32.5  |-  ( ph  ->  M  e.  NN )
stoweidlem32.6  |-  ( ph  ->  Y  e.  RR )
stoweidlem32.7  |-  ( ph  ->  G : ( 1 ... M ) --> A )
stoweidlem32.8  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
stoweidlem32.9  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
stoweidlem32.10  |-  ( (
ph  /\  x  e.  RR )  ->  ( t  e.  T  |->  x )  e.  A )
stoweidlem32.11  |-  ( (
ph  /\  f  e.  A )  ->  f : T --> RR )
Assertion
Ref Expression
stoweidlem32  |-  ( ph  ->  P  e.  A )
Distinct variable groups:    f, g,
i, t, G    A, f, g    f, F, g    T, f, g, i, t    ph, f, g, i    g, H    i, M, t    t, Y, x    x, T    x, A    x, Y    ph, x
Allowed substitution hints:    ph( t)    A( t, i)    P( x, t, f, g, i)    F( x, t, i)    G( x)    H( x, t, f, i)    M( x, f, g)    Y( f, g, i)

Proof of Theorem stoweidlem32
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 stoweidlem32.2 . . 3  |-  P  =  ( t  e.  T  |->  ( Y  x.  sum_ i  e.  ( 1 ... M ) ( ( G `  i
) `  t )
) )
2 stoweidlem32.1 . . . 4  |-  F/ t
ph
3 stoweidlem32.3 . . . . . . . . . . 11  |-  F  =  ( t  e.  T  |-> 
sum_ i  e.  ( 1 ... M ) ( ( G `  i ) `  t
) )
4 fveq2 5720 . . . . . . . . . . . . 13  |-  ( t  =  s  ->  (
( G `  i
) `  t )  =  ( ( G `
 i ) `  s ) )
54sumeq2sdv 12490 . . . . . . . . . . . 12  |-  ( t  =  s  ->  sum_ i  e.  ( 1 ... M
) ( ( G `
 i ) `  t )  =  sum_ i  e.  ( 1 ... M ) ( ( G `  i
) `  s )
)
65cbvmptv 4292 . . . . . . . . . . 11  |-  ( t  e.  T  |->  sum_ i  e.  ( 1 ... M
) ( ( G `
 i ) `  t ) )  =  ( s  e.  T  |-> 
sum_ i  e.  ( 1 ... M ) ( ( G `  i ) `  s
) )
73, 6eqtri 2455 . . . . . . . . . 10  |-  F  =  ( s  e.  T  |-> 
sum_ i  e.  ( 1 ... M ) ( ( G `  i ) `  s
) )
87a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  T )  ->  F  =  ( s  e.  T  |->  sum_ i  e.  ( 1 ... M ) ( ( G `  i ) `  s
) ) )
9 fveq2 5720 . . . . . . . . . . 11  |-  ( s  =  t  ->  (
( G `  i
) `  s )  =  ( ( G `
 i ) `  t ) )
109sumeq2sdv 12490 . . . . . . . . . 10  |-  ( s  =  t  ->  sum_ i  e.  ( 1 ... M
) ( ( G `
 i ) `  s )  =  sum_ i  e.  ( 1 ... M ) ( ( G `  i
) `  t )
)
1110adantl 453 . . . . . . . . 9  |-  ( ( ( ph  /\  t  e.  T )  /\  s  =  t )  ->  sum_ i  e.  ( 1 ... M ) ( ( G `  i
) `  s )  =  sum_ i  e.  ( 1 ... M ) ( ( G `  i ) `  t
) )
12 simpr 448 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  T )  ->  t  e.  T )
13 fzfid 11304 . . . . . . . . . 10  |-  ( (
ph  /\  t  e.  T )  ->  (
1 ... M )  e. 
Fin )
14 simpl 444 . . . . . . . . . . . . 13  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  ph )
15 stoweidlem32.7 . . . . . . . . . . . . . 14  |-  ( ph  ->  G : ( 1 ... M ) --> A )
1615fnvinran 27652 . . . . . . . . . . . . 13  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  ( G `  i )  e.  A )
17 eleq1 2495 . . . . . . . . . . . . . . . . 17  |-  ( f  =  ( G `  i )  ->  (
f  e.  A  <->  ( G `  i )  e.  A
) )
1817anbi2d 685 . . . . . . . . . . . . . . . 16  |-  ( f  =  ( G `  i )  ->  (
( ph  /\  f  e.  A )  <->  ( ph  /\  ( G `  i
)  e.  A ) ) )
19 feq1 5568 . . . . . . . . . . . . . . . 16  |-  ( f  =  ( G `  i )  ->  (
f : T --> RR  <->  ( G `  i ) : T --> RR ) )
2018, 19imbi12d 312 . . . . . . . . . . . . . . 15  |-  ( f  =  ( G `  i )  ->  (
( ( ph  /\  f  e.  A )  ->  f : T --> RR )  <-> 
( ( ph  /\  ( G `  i )  e.  A )  -> 
( G `  i
) : T --> RR ) ) )
21 stoweidlem32.11 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  f  e.  A )  ->  f : T --> RR )
2220, 21vtoclg 3003 . . . . . . . . . . . . . 14  |-  ( ( G `  i )  e.  A  ->  (
( ph  /\  ( G `  i )  e.  A )  ->  ( G `  i ) : T --> RR ) )
2316, 22syl 16 . . . . . . . . . . . . 13  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  (
( ph  /\  ( G `  i )  e.  A )  ->  ( G `  i ) : T --> RR ) )
2414, 16, 23mp2and 661 . . . . . . . . . . . 12  |-  ( (
ph  /\  i  e.  ( 1 ... M
) )  ->  ( G `  i ) : T --> RR )
2524adantlr 696 . . . . . . . . . . 11  |-  ( ( ( ph  /\  t  e.  T )  /\  i  e.  ( 1 ... M
) )  ->  ( G `  i ) : T --> RR )
26 simplr 732 . . . . . . . . . . 11  |-  ( ( ( ph  /\  t  e.  T )  /\  i  e.  ( 1 ... M
) )  ->  t  e.  T )
2725, 26ffvelrnd 5863 . . . . . . . . . 10  |-  ( ( ( ph  /\  t  e.  T )  /\  i  e.  ( 1 ... M
) )  ->  (
( G `  i
) `  t )  e.  RR )
2813, 27fsumrecl 12520 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  T )  ->  sum_ i  e.  ( 1 ... M
) ( ( G `
 i ) `  t )  e.  RR )
298, 11, 12, 28fvmptd 5802 . . . . . . . 8  |-  ( (
ph  /\  t  e.  T )  ->  ( F `  t )  =  sum_ i  e.  ( 1 ... M ) ( ( G `  i ) `  t
) )
3029, 28eqeltrd 2509 . . . . . . 7  |-  ( (
ph  /\  t  e.  T )  ->  ( F `  t )  e.  RR )
3130recnd 9106 . . . . . 6  |-  ( (
ph  /\  t  e.  T )  ->  ( F `  t )  e.  CC )
32 stoweidlem32.4 . . . . . . . . . . 11  |-  H  =  ( t  e.  T  |->  Y )
33 eqidd 2436 . . . . . . . . . . . 12  |-  ( s  =  t  ->  Y  =  Y )
3433cbvmptv 4292 . . . . . . . . . . 11  |-  ( s  e.  T  |->  Y )  =  ( t  e.  T  |->  Y )
3532, 34eqtr4i 2458 . . . . . . . . . 10  |-  H  =  ( s  e.  T  |->  Y )
3635a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  T )  ->  H  =  ( s  e.  T  |->  Y ) )
37 eqidd 2436 . . . . . . . . 9  |-  ( ( ( ph  /\  t  e.  T )  /\  s  =  t )  ->  Y  =  Y )
38 stoweidlem32.6 . . . . . . . . . 10  |-  ( ph  ->  Y  e.  RR )
3938adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  T )  ->  Y  e.  RR )
4036, 37, 12, 39fvmptd 5802 . . . . . . . 8  |-  ( (
ph  /\  t  e.  T )  ->  ( H `  t )  =  Y )
4140, 39eqeltrd 2509 . . . . . . 7  |-  ( (
ph  /\  t  e.  T )  ->  ( H `  t )  e.  RR )
4241recnd 9106 . . . . . 6  |-  ( (
ph  /\  t  e.  T )  ->  ( H `  t )  e.  CC )
4331, 42mulcomd 9101 . . . . 5  |-  ( (
ph  /\  t  e.  T )  ->  (
( F `  t
)  x.  ( H `
 t ) )  =  ( ( H `
 t )  x.  ( F `  t
) ) )
4440, 29oveq12d 6091 . . . . 5  |-  ( (
ph  /\  t  e.  T )  ->  (
( H `  t
)  x.  ( F `
 t ) )  =  ( Y  x.  sum_ i  e.  ( 1 ... M ) ( ( G `  i
) `  t )
) )
4543, 44eqtr2d 2468 . . . 4  |-  ( (
ph  /\  t  e.  T )  ->  ( Y  x.  sum_ i  e.  ( 1 ... M
) ( ( G `
 i ) `  t ) )  =  ( ( F `  t )  x.  ( H `  t )
) )
462, 45mpteq2da 4286 . . 3  |-  ( ph  ->  ( t  e.  T  |->  ( Y  x.  sum_ i  e.  ( 1 ... M ) ( ( G `  i
) `  t )
) )  =  ( t  e.  T  |->  ( ( F `  t
)  x.  ( H `
 t ) ) ) )
471, 46syl5eq 2479 . 2  |-  ( ph  ->  P  =  ( t  e.  T  |->  ( ( F `  t )  x.  ( H `  t ) ) ) )
48 stoweidlem32.5 . . . 4  |-  ( ph  ->  M  e.  NN )
49 stoweidlem32.8 . . . 4  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
502, 3, 48, 15, 49, 21stoweidlem20 27736 . . 3  |-  ( ph  ->  F  e.  A )
51 stoweidlem32.10 . . . . . 6  |-  ( (
ph  /\  x  e.  RR )  ->  ( t  e.  T  |->  x )  e.  A )
5251stoweidlem4 27720 . . . . 5  |-  ( (
ph  /\  Y  e.  RR )  ->  ( t  e.  T  |->  Y )  e.  A )
5338, 52mpdan 650 . . . 4  |-  ( ph  ->  ( t  e.  T  |->  Y )  e.  A
)
5432, 53syl5eqel 2519 . . 3  |-  ( ph  ->  H  e.  A )
55 nfmpt1 4290 . . . . . 6  |-  F/_ t
( t  e.  T  |-> 
sum_ i  e.  ( 1 ... M ) ( ( G `  i ) `  t
) )
563, 55nfcxfr 2568 . . . . 5  |-  F/_ t F
5756nfeq2 2582 . . . 4  |-  F/ t  f  =  F
58 nfmpt1 4290 . . . . . 6  |-  F/_ t
( t  e.  T  |->  Y )
5932, 58nfcxfr 2568 . . . . 5  |-  F/_ t H
6059nfeq2 2582 . . . 4  |-  F/ t  g  =  H
61 stoweidlem32.9 . . . 4  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
6257, 60, 61stoweidlem6 27722 . . 3  |-  ( (
ph  /\  F  e.  A  /\  H  e.  A
)  ->  ( t  e.  T  |->  ( ( F `  t )  x.  ( H `  t ) ) )  e.  A )
6350, 54, 62mpd3an23 1281 . 2  |-  ( ph  ->  ( t  e.  T  |->  ( ( F `  t )  x.  ( H `  t )
) )  e.  A
)
6447, 63eqeltrd 2509 1  |-  ( ph  ->  P  e.  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936   F/wnf 1553    = wceq 1652    e. wcel 1725    e. cmpt 4258   -->wf 5442   ` cfv 5446  (class class class)co 6073   RRcr 8981   1c1 8983    + caddc 8985    x. cmul 8987   NNcn 9992   ...cfz 11035   sum_csu 12471
This theorem is referenced by:  stoweidlem44  27760
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7588  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-isom 5455  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-oadd 6720  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-sup 7438  df-oi 7471  df-card 7818  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-2 10050  df-3 10051  df-n0 10214  df-z 10275  df-uz 10481  df-rp 10605  df-fz 11036  df-fzo 11128  df-seq 11316  df-exp 11375  df-hash 11611  df-cj 11896  df-re 11897  df-im 11898  df-sqr 12032  df-abs 12033  df-clim 12274  df-sum 12472
  Copyright terms: Public domain W3C validator