Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem4 Structured version   Unicode version

Theorem stoweidlem4 27743
Description: Lemma for stoweid 27802: a class variable replaces a set variable, for constant functions. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypothesis
Ref Expression
stoweidlem4.1  |-  ( (
ph  /\  x  e.  RR )  ->  ( t  e.  T  |->  x )  e.  A )
Assertion
Ref Expression
stoweidlem4  |-  ( (
ph  /\  B  e.  RR )  ->  ( t  e.  T  |->  B )  e.  A )
Distinct variable groups:    x, t, B    x, A    x, T    ph, x
Allowed substitution hints:    ph( t)    A( t)    T( t)

Proof of Theorem stoweidlem4
StepHypRef Expression
1 eleq1 2498 . . . . 5  |-  ( x  =  B  ->  (
x  e.  RR  <->  B  e.  RR ) )
21anbi2d 686 . . . 4  |-  ( x  =  B  ->  (
( ph  /\  x  e.  RR )  <->  ( ph  /\  B  e.  RR ) ) )
3 simpl 445 . . . . . 6  |-  ( ( x  =  B  /\  t  e.  T )  ->  x  =  B )
43mpteq2dva 4298 . . . . 5  |-  ( x  =  B  ->  (
t  e.  T  |->  x )  =  ( t  e.  T  |->  B ) )
54eleq1d 2504 . . . 4  |-  ( x  =  B  ->  (
( t  e.  T  |->  x )  e.  A  <->  ( t  e.  T  |->  B )  e.  A ) )
62, 5imbi12d 313 . . 3  |-  ( x  =  B  ->  (
( ( ph  /\  x  e.  RR )  ->  ( t  e.  T  |->  x )  e.  A
)  <->  ( ( ph  /\  B  e.  RR )  ->  ( t  e.  T  |->  B )  e.  A ) ) )
7 stoweidlem4.1 . . 3  |-  ( (
ph  /\  x  e.  RR )  ->  ( t  e.  T  |->  x )  e.  A )
86, 7vtoclg 3013 . 2  |-  ( B  e.  RR  ->  (
( ph  /\  B  e.  RR )  ->  (
t  e.  T  |->  B )  e.  A ) )
98anabsi7 794 1  |-  ( (
ph  /\  B  e.  RR )  ->  ( t  e.  T  |->  B )  e.  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    = wceq 1653    e. wcel 1726    e. cmpt 4269   RRcr 8994
This theorem is referenced by:  stoweidlem18  27757  stoweidlem19  27758  stoweidlem22  27761  stoweidlem32  27771  stoweidlem36  27775  stoweidlem40  27779  stoweidlem41  27780  stoweidlem55  27794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ral 2712  df-v 2960  df-opab 4270  df-mpt 4271
  Copyright terms: Public domain W3C validator