Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem40 Structured version   Unicode version

Theorem stoweidlem40 27767
Description: This lemma proves that qn is in the subalgebra, as in the proof of Lemma 1 in [BrosowskiDeutsh] p. 90. Q is used to represent qn in the paper, N is used to represent n in the paper, and M is used to represent k^n in the paper. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem40.1  |-  F/_ t P
stoweidlem40.2  |-  F/ t
ph
stoweidlem40.3  |-  Q  =  ( t  e.  T  |->  ( ( 1  -  ( ( P `  t ) ^ N
) ) ^ M
) )
stoweidlem40.4  |-  F  =  ( t  e.  T  |->  ( 1  -  (
( P `  t
) ^ N ) ) )
stoweidlem40.5  |-  G  =  ( t  e.  T  |->  1 )
stoweidlem40.6  |-  H  =  ( t  e.  T  |->  ( ( P `  t ) ^ N
) )
stoweidlem40.7  |-  ( ph  ->  P  e.  A )
stoweidlem40.8  |-  ( ph  ->  P : T --> RR )
stoweidlem40.9  |-  ( (
ph  /\  f  e.  A )  ->  f : T --> RR )
stoweidlem40.10  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
stoweidlem40.11  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
stoweidlem40.12  |-  ( (
ph  /\  x  e.  RR )  ->  ( t  e.  T  |->  x )  e.  A )
stoweidlem40.13  |-  ( ph  ->  N  e.  NN )
stoweidlem40.14  |-  ( ph  ->  M  e.  NN )
Assertion
Ref Expression
stoweidlem40  |-  ( ph  ->  Q  e.  A )
Distinct variable groups:    f, g,
t, A    f, F, g    f, G, g    f, H, g    P, f, g    T, f, g, t    ph, f,
g    x, t, A    t, M    t, N    x, T    ph, x
Allowed substitution hints:    ph( t)    P( x, t)    Q( x, t, f, g)    F( x, t)    G( x, t)    H( x, t)    M( x, f, g)    N( x, f, g)

Proof of Theorem stoweidlem40
StepHypRef Expression
1 stoweidlem40.3 . . 3  |-  Q  =  ( t  e.  T  |->  ( ( 1  -  ( ( P `  t ) ^ N
) ) ^ M
) )
2 stoweidlem40.2 . . . 4  |-  F/ t
ph
3 simpr 449 . . . . . . 7  |-  ( (
ph  /\  t  e.  T )  ->  t  e.  T )
4 1re 9092 . . . . . . . . 9  |-  1  e.  RR
54a1i 11 . . . . . . . 8  |-  ( (
ph  /\  t  e.  T )  ->  1  e.  RR )
6 stoweidlem40.8 . . . . . . . . . 10  |-  ( ph  ->  P : T --> RR )
76fnvinran 27663 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  T )  ->  ( P `  t )  e.  RR )
8 stoweidlem40.13 . . . . . . . . . . 11  |-  ( ph  ->  N  e.  NN )
98nnnn0d 10276 . . . . . . . . . 10  |-  ( ph  ->  N  e.  NN0 )
109adantr 453 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  T )  ->  N  e.  NN0 )
117, 10reexpcld 11542 . . . . . . . 8  |-  ( (
ph  /\  t  e.  T )  ->  (
( P `  t
) ^ N )  e.  RR )
125, 11resubcld 9467 . . . . . . 7  |-  ( (
ph  /\  t  e.  T )  ->  (
1  -  ( ( P `  t ) ^ N ) )  e.  RR )
13 stoweidlem40.4 . . . . . . . 8  |-  F  =  ( t  e.  T  |->  ( 1  -  (
( P `  t
) ^ N ) ) )
1413fvmpt2 5814 . . . . . . 7  |-  ( ( t  e.  T  /\  ( 1  -  (
( P `  t
) ^ N ) )  e.  RR )  ->  ( F `  t )  =  ( 1  -  ( ( P `  t ) ^ N ) ) )
153, 12, 14syl2anc 644 . . . . . 6  |-  ( (
ph  /\  t  e.  T )  ->  ( F `  t )  =  ( 1  -  ( ( P `  t ) ^ N
) ) )
1615eqcomd 2443 . . . . 5  |-  ( (
ph  /\  t  e.  T )  ->  (
1  -  ( ( P `  t ) ^ N ) )  =  ( F `  t ) )
1716oveq1d 6098 . . . 4  |-  ( (
ph  /\  t  e.  T )  ->  (
( 1  -  (
( P `  t
) ^ N ) ) ^ M )  =  ( ( F `
 t ) ^ M ) )
182, 17mpteq2da 4296 . . 3  |-  ( ph  ->  ( t  e.  T  |->  ( ( 1  -  ( ( P `  t ) ^ N
) ) ^ M
) )  =  ( t  e.  T  |->  ( ( F `  t
) ^ M ) ) )
191, 18syl5eq 2482 . 2  |-  ( ph  ->  Q  =  ( t  e.  T  |->  ( ( F `  t ) ^ M ) ) )
20 nfmpt1 4300 . . . 4  |-  F/_ t
( t  e.  T  |->  ( 1  -  (
( P `  t
) ^ N ) ) )
2113, 20nfcxfr 2571 . . 3  |-  F/_ t F
22 stoweidlem40.9 . . 3  |-  ( (
ph  /\  f  e.  A )  ->  f : T --> RR )
23 stoweidlem40.11 . . 3  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
24 stoweidlem40.12 . . 3  |-  ( (
ph  /\  x  e.  RR )  ->  ( t  e.  T  |->  x )  e.  A )
25 stoweidlem40.5 . . . . . . . . . . 11  |-  G  =  ( t  e.  T  |->  1 )
2625fvmpt2 5814 . . . . . . . . . 10  |-  ( ( t  e.  T  /\  1  e.  RR )  ->  ( G `  t
)  =  1 )
274, 26mpan2 654 . . . . . . . . 9  |-  ( t  e.  T  ->  ( G `  t )  =  1 )
2827eqcomd 2443 . . . . . . . 8  |-  ( t  e.  T  ->  1  =  ( G `  t ) )
2928adantl 454 . . . . . . 7  |-  ( (
ph  /\  t  e.  T )  ->  1  =  ( G `  t ) )
30 stoweidlem40.6 . . . . . . . . . 10  |-  H  =  ( t  e.  T  |->  ( ( P `  t ) ^ N
) )
3130fvmpt2 5814 . . . . . . . . 9  |-  ( ( t  e.  T  /\  ( ( P `  t ) ^ N
)  e.  RR )  ->  ( H `  t )  =  ( ( P `  t
) ^ N ) )
323, 11, 31syl2anc 644 . . . . . . . 8  |-  ( (
ph  /\  t  e.  T )  ->  ( H `  t )  =  ( ( P `
 t ) ^ N ) )
3332eqcomd 2443 . . . . . . 7  |-  ( (
ph  /\  t  e.  T )  ->  (
( P `  t
) ^ N )  =  ( H `  t ) )
3429, 33oveq12d 6101 . . . . . 6  |-  ( (
ph  /\  t  e.  T )  ->  (
1  -  ( ( P `  t ) ^ N ) )  =  ( ( G `
 t )  -  ( H `  t ) ) )
352, 34mpteq2da 4296 . . . . 5  |-  ( ph  ->  ( t  e.  T  |->  ( 1  -  (
( P `  t
) ^ N ) ) )  =  ( t  e.  T  |->  ( ( G `  t
)  -  ( H `
 t ) ) ) )
3613, 35syl5eq 2482 . . . 4  |-  ( ph  ->  F  =  ( t  e.  T  |->  ( ( G `  t )  -  ( H `  t ) ) ) )
3724stoweidlem4 27731 . . . . . . 7  |-  ( (
ph  /\  1  e.  RR )  ->  ( t  e.  T  |->  1 )  e.  A )
384, 37mpan2 654 . . . . . 6  |-  ( ph  ->  ( t  e.  T  |->  1 )  e.  A
)
3925, 38syl5eqel 2522 . . . . 5  |-  ( ph  ->  G  e.  A )
40 stoweidlem40.1 . . . . . . 7  |-  F/_ t P
41 stoweidlem40.7 . . . . . . 7  |-  ( ph  ->  P  e.  A )
4240, 2, 22, 23, 24, 41, 9stoweidlem19 27746 . . . . . 6  |-  ( ph  ->  ( t  e.  T  |->  ( ( P `  t ) ^ N
) )  e.  A
)
4330, 42syl5eqel 2522 . . . . 5  |-  ( ph  ->  H  e.  A )
44 nfmpt1 4300 . . . . . . 7  |-  F/_ t
( t  e.  T  |->  1 )
4525, 44nfcxfr 2571 . . . . . 6  |-  F/_ t G
46 nfmpt1 4300 . . . . . . 7  |-  F/_ t
( t  e.  T  |->  ( ( P `  t ) ^ N
) )
4730, 46nfcxfr 2571 . . . . . 6  |-  F/_ t H
48 stoweidlem40.10 . . . . . 6  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
4945, 47, 2, 22, 48, 23, 24stoweidlem33 27760 . . . . 5  |-  ( (
ph  /\  G  e.  A  /\  H  e.  A
)  ->  ( t  e.  T  |->  ( ( G `  t )  -  ( H `  t ) ) )  e.  A )
5039, 43, 49mpd3an23 1282 . . . 4  |-  ( ph  ->  ( t  e.  T  |->  ( ( G `  t )  -  ( H `  t )
) )  e.  A
)
5136, 50eqeltrd 2512 . . 3  |-  ( ph  ->  F  e.  A )
52 stoweidlem40.14 . . . 4  |-  ( ph  ->  M  e.  NN )
5352nnnn0d 10276 . . 3  |-  ( ph  ->  M  e.  NN0 )
5421, 2, 22, 23, 24, 51, 53stoweidlem19 27746 . 2  |-  ( ph  ->  ( t  e.  T  |->  ( ( F `  t ) ^ M
) )  e.  A
)
5519, 54eqeltrd 2512 1  |-  ( ph  ->  Q  e.  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    /\ w3a 937   F/wnf 1554    = wceq 1653    e. wcel 1726   F/_wnfc 2561    e. cmpt 4268   -->wf 5452   ` cfv 5456  (class class class)co 6083   RRcr 8991   1c1 8993    + caddc 8995    x. cmul 8997    - cmin 9293   NNcn 10002   NN0cn0 10223   ^cexp 11384
This theorem is referenced by:  stoweidlem45  27772
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703  ax-cnex 9048  ax-resscn 9049  ax-1cn 9050  ax-icn 9051  ax-addcl 9052  ax-addrcl 9053  ax-mulcl 9054  ax-mulrcl 9055  ax-mulcom 9056  ax-addass 9057  ax-mulass 9058  ax-distr 9059  ax-i2m1 9060  ax-1ne0 9061  ax-1rid 9062  ax-rnegex 9063  ax-rrecex 9064  ax-cnre 9065  ax-pre-lttri 9066  ax-pre-lttrn 9067  ax-pre-ltadd 9068  ax-pre-mulgt0 9069
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-2nd 6352  df-riota 6551  df-recs 6635  df-rdg 6670  df-er 6907  df-en 7112  df-dom 7113  df-sdom 7114  df-pnf 9124  df-mnf 9125  df-xr 9126  df-ltxr 9127  df-le 9128  df-sub 9295  df-neg 9296  df-nn 10003  df-n0 10224  df-z 10285  df-uz 10491  df-seq 11326  df-exp 11385
  Copyright terms: Public domain W3C validator