Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem46 Structured version   Unicode version

Theorem stoweidlem46 27772
Description: This lemma proves that sets U(t) as defined in Lemma 1 of [BrosowskiDeutsh] p. 90, are a cover of T \ U. Using this lemma, in a later theorem we will prove that a finite subcover exists. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem46.1  |-  F/_ t U
stoweidlem46.2  |-  F/_ h Q
stoweidlem46.3  |-  F/ q
ph
stoweidlem46.4  |-  F/ t
ph
stoweidlem46.5  |-  K  =  ( topGen `  ran  (,) )
stoweidlem46.6  |-  Q  =  { h  e.  A  |  ( ( h `
 Z )  =  0  /\  A. t  e.  T  ( 0  <_  ( h `  t )  /\  (
h `  t )  <_  1 ) ) }
stoweidlem46.7  |-  W  =  { w  e.  J  |  E. h  e.  Q  w  =  { t  e.  T  |  0  <  ( h `  t
) } }
stoweidlem46.8  |-  T  = 
U. J
stoweidlem46.9  |-  ( ph  ->  J  e.  Comp )
stoweidlem46.10  |-  ( ph  ->  A  C_  ( J  Cn  K ) )
stoweidlem46.11  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
stoweidlem46.12  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
stoweidlem46.13  |-  ( (
ph  /\  x  e.  RR )  ->  ( t  e.  T  |->  x )  e.  A )
stoweidlem46.14  |-  ( (
ph  /\  ( r  e.  T  /\  t  e.  T  /\  r  =/=  t ) )  ->  E. q  e.  A  ( q `  r
)  =/=  ( q `
 t ) )
stoweidlem46.15  |-  ( ph  ->  U  e.  J )
stoweidlem46.16  |-  ( ph  ->  Z  e.  U )
stoweidlem46.17  |-  ( ph  ->  T  e.  _V )
Assertion
Ref Expression
stoweidlem46  |-  ( ph  ->  ( T  \  U
)  C_  U. W )
Distinct variable groups:    f, g, h, t, T    f, q,
g, t, T    f,
r, q, t, T   
x, f, q, t, T    A, f, g, h, t    Q, f, g    U, f, g, q    f, Z, g, h, t    ph, f,
g    w, g, h, t, T    g, W    A, q, r    Z, q, x    U, r    ph, r    t, J, w    t, K    w, Q    x, A    x, U    ph, x
Allowed substitution hints:    ph( w, t, h, q)    A( w)    Q( x, t, h, r, q)    U( w, t, h)    J( x, f, g, h, r, q)    K( x, w, f, g, h, r, q)    W( x, w, t, f, h, r, q)    Z( w, r)

Proof of Theorem stoweidlem46
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 stoweidlem46.3 . . . . . . . 8  |-  F/ q
ph
2 nfv 1630 . . . . . . . 8  |-  F/ q  s  e.  ( T 
\  U )
31, 2nfan 1847 . . . . . . 7  |-  F/ q ( ph  /\  s  e.  ( T  \  U
) )
4 stoweidlem46.4 . . . . . . . 8  |-  F/ t
ph
5 nfcv 2573 . . . . . . . . . 10  |-  F/_ t T
6 stoweidlem46.1 . . . . . . . . . 10  |-  F/_ t U
75, 6nfdif 3469 . . . . . . . . 9  |-  F/_ t
( T  \  U
)
87nfel2 2585 . . . . . . . 8  |-  F/ t  s  e.  ( T 
\  U )
94, 8nfan 1847 . . . . . . 7  |-  F/ t ( ph  /\  s  e.  ( T  \  U
) )
10 stoweidlem46.2 . . . . . . 7  |-  F/_ h Q
11 stoweidlem46.5 . . . . . . 7  |-  K  =  ( topGen `  ran  (,) )
12 stoweidlem46.6 . . . . . . 7  |-  Q  =  { h  e.  A  |  ( ( h `
 Z )  =  0  /\  A. t  e.  T  ( 0  <_  ( h `  t )  /\  (
h `  t )  <_  1 ) ) }
13 stoweidlem46.8 . . . . . . 7  |-  T  = 
U. J
14 stoweidlem46.9 . . . . . . . 8  |-  ( ph  ->  J  e.  Comp )
1514adantr 453 . . . . . . 7  |-  ( (
ph  /\  s  e.  ( T  \  U ) )  ->  J  e.  Comp )
16 stoweidlem46.10 . . . . . . . 8  |-  ( ph  ->  A  C_  ( J  Cn  K ) )
1716adantr 453 . . . . . . 7  |-  ( (
ph  /\  s  e.  ( T  \  U ) )  ->  A  C_  ( J  Cn  K ) )
18 stoweidlem46.11 . . . . . . . 8  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
19183adant1r 1178 . . . . . . 7  |-  ( ( ( ph  /\  s  e.  ( T  \  U
) )  /\  f  e.  A  /\  g  e.  A )  ->  (
t  e.  T  |->  ( ( f `  t
)  +  ( g `
 t ) ) )  e.  A )
20 stoweidlem46.12 . . . . . . . 8  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
21203adant1r 1178 . . . . . . 7  |-  ( ( ( ph  /\  s  e.  ( T  \  U
) )  /\  f  e.  A  /\  g  e.  A )  ->  (
t  e.  T  |->  ( ( f `  t
)  x.  ( g `
 t ) ) )  e.  A )
22 stoweidlem46.13 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  ( t  e.  T  |->  x )  e.  A )
2322adantlr 697 . . . . . . 7  |-  ( ( ( ph  /\  s  e.  ( T  \  U
) )  /\  x  e.  RR )  ->  (
t  e.  T  |->  x )  e.  A )
24 stoweidlem46.14 . . . . . . . 8  |-  ( (
ph  /\  ( r  e.  T  /\  t  e.  T  /\  r  =/=  t ) )  ->  E. q  e.  A  ( q `  r
)  =/=  ( q `
 t ) )
2524adantlr 697 . . . . . . 7  |-  ( ( ( ph  /\  s  e.  ( T  \  U
) )  /\  (
r  e.  T  /\  t  e.  T  /\  r  =/=  t ) )  ->  E. q  e.  A  ( q `  r
)  =/=  ( q `
 t ) )
26 stoweidlem46.15 . . . . . . . 8  |-  ( ph  ->  U  e.  J )
2726adantr 453 . . . . . . 7  |-  ( (
ph  /\  s  e.  ( T  \  U ) )  ->  U  e.  J )
28 stoweidlem46.16 . . . . . . . 8  |-  ( ph  ->  Z  e.  U )
2928adantr 453 . . . . . . 7  |-  ( (
ph  /\  s  e.  ( T  \  U ) )  ->  Z  e.  U )
30 simpr 449 . . . . . . 7  |-  ( (
ph  /\  s  e.  ( T  \  U ) )  ->  s  e.  ( T  \  U ) )
313, 9, 10, 11, 12, 13, 15, 17, 19, 21, 23, 25, 27, 29, 30stoweidlem43 27769 . . . . . 6  |-  ( (
ph  /\  s  e.  ( T  \  U ) )  ->  E. h
( h  e.  Q  /\  0  <  ( h `
 s ) ) )
32 nfv 1630 . . . . . . 7  |-  F/ g ( h  e.  Q  /\  0  <  ( h `
 s ) )
3310nfel2 2585 . . . . . . . 8  |-  F/ h  g  e.  Q
34 nfv 1630 . . . . . . . 8  |-  F/ h
0  <  ( g `  s )
3533, 34nfan 1847 . . . . . . 7  |-  F/ h
( g  e.  Q  /\  0  <  ( g `
 s ) )
36 eleq1 2497 . . . . . . . 8  |-  ( h  =  g  ->  (
h  e.  Q  <->  g  e.  Q ) )
37 fveq1 5728 . . . . . . . . 9  |-  ( h  =  g  ->  (
h `  s )  =  ( g `  s ) )
3837breq2d 4225 . . . . . . . 8  |-  ( h  =  g  ->  (
0  <  ( h `  s )  <->  0  <  ( g `  s ) ) )
3936, 38anbi12d 693 . . . . . . 7  |-  ( h  =  g  ->  (
( h  e.  Q  /\  0  <  ( h `
 s ) )  <-> 
( g  e.  Q  /\  0  <  ( g `
 s ) ) ) )
4032, 35, 39cbvex 1984 . . . . . 6  |-  ( E. h ( h  e.  Q  /\  0  < 
( h `  s
) )  <->  E. g
( g  e.  Q  /\  0  <  ( g `
 s ) ) )
4131, 40sylib 190 . . . . 5  |-  ( (
ph  /\  s  e.  ( T  \  U ) )  ->  E. g
( g  e.  Q  /\  0  <  ( g `
 s ) ) )
42 stoweidlem46.17 . . . . . . . 8  |-  ( ph  ->  T  e.  _V )
43 rabexg 4354 . . . . . . . 8  |-  ( T  e.  _V  ->  { t  e.  T  |  0  <  ( g `  t ) }  e.  _V )
4442, 43syl 16 . . . . . . 7  |-  ( ph  ->  { t  e.  T  |  0  <  (
g `  t ) }  e.  _V )
4544ad2antrr 708 . . . . . 6  |-  ( ( ( ph  /\  s  e.  ( T  \  U
) )  /\  (
g  e.  Q  /\  0  <  ( g `  s ) ) )  ->  { t  e.  T  |  0  < 
( g `  t
) }  e.  _V )
46 eldifi 3470 . . . . . . . 8  |-  ( s  e.  ( T  \  U )  ->  s  e.  T )
4746ad2antlr 709 . . . . . . 7  |-  ( ( ( ph  /\  s  e.  ( T  \  U
) )  /\  (
g  e.  Q  /\  0  <  ( g `  s ) ) )  ->  s  e.  T
)
48 simprr 735 . . . . . . 7  |-  ( ( ( ph  /\  s  e.  ( T  \  U
) )  /\  (
g  e.  Q  /\  0  <  ( g `  s ) ) )  ->  0  <  (
g `  s )
)
49 fveq2 5729 . . . . . . . . 9  |-  ( t  =  s  ->  (
g `  t )  =  ( g `  s ) )
5049breq2d 4225 . . . . . . . 8  |-  ( t  =  s  ->  (
0  <  ( g `  t )  <->  0  <  ( g `  s ) ) )
5150elrab 3093 . . . . . . 7  |-  ( s  e.  { t  e.  T  |  0  < 
( g `  t
) }  <->  ( s  e.  T  /\  0  <  ( g `  s
) ) )
5247, 48, 51sylanbrc 647 . . . . . 6  |-  ( ( ( ph  /\  s  e.  ( T  \  U
) )  /\  (
g  e.  Q  /\  0  <  ( g `  s ) ) )  ->  s  e.  {
t  e.  T  | 
0  <  ( g `  t ) } )
53 simpll 732 . . . . . . . . 9  |-  ( ( ( ph  /\  s  e.  ( T  \  U
) )  /\  (
g  e.  Q  /\  0  <  ( g `  s ) ) )  ->  ph )
5416adantr 453 . . . . . . . . . . 11  |-  ( (
ph  /\  g  e.  Q )  ->  A  C_  ( J  Cn  K
) )
55 simpr 449 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  g  e.  Q )  ->  g  e.  Q )
5655, 12syl6eleq 2527 . . . . . . . . . . . . 13  |-  ( (
ph  /\  g  e.  Q )  ->  g  e.  { h  e.  A  |  ( ( h `
 Z )  =  0  /\  A. t  e.  T  ( 0  <_  ( h `  t )  /\  (
h `  t )  <_  1 ) ) } )
57 fveq1 5728 . . . . . . . . . . . . . . . 16  |-  ( h  =  g  ->  (
h `  Z )  =  ( g `  Z ) )
5857eqeq1d 2445 . . . . . . . . . . . . . . 15  |-  ( h  =  g  ->  (
( h `  Z
)  =  0  <->  (
g `  Z )  =  0 ) )
59 fveq1 5728 . . . . . . . . . . . . . . . . . 18  |-  ( h  =  g  ->  (
h `  t )  =  ( g `  t ) )
6059breq2d 4225 . . . . . . . . . . . . . . . . 17  |-  ( h  =  g  ->  (
0  <_  ( h `  t )  <->  0  <_  ( g `  t ) ) )
6159breq1d 4223 . . . . . . . . . . . . . . . . 17  |-  ( h  =  g  ->  (
( h `  t
)  <_  1  <->  ( g `  t )  <_  1
) )
6260, 61anbi12d 693 . . . . . . . . . . . . . . . 16  |-  ( h  =  g  ->  (
( 0  <_  (
h `  t )  /\  ( h `  t
)  <_  1 )  <-> 
( 0  <_  (
g `  t )  /\  ( g `  t
)  <_  1 ) ) )
6362ralbidv 2726 . . . . . . . . . . . . . . 15  |-  ( h  =  g  ->  ( A. t  e.  T  ( 0  <_  (
h `  t )  /\  ( h `  t
)  <_  1 )  <->  A. t  e.  T  ( 0  <_  (
g `  t )  /\  ( g `  t
)  <_  1 ) ) )
6458, 63anbi12d 693 . . . . . . . . . . . . . 14  |-  ( h  =  g  ->  (
( ( h `  Z )  =  0  /\  A. t  e.  T  ( 0  <_ 
( h `  t
)  /\  ( h `  t )  <_  1
) )  <->  ( (
g `  Z )  =  0  /\  A. t  e.  T  (
0  <_  ( g `  t )  /\  (
g `  t )  <_  1 ) ) ) )
6564elrab 3093 . . . . . . . . . . . . 13  |-  ( g  e.  { h  e.  A  |  ( ( h `  Z )  =  0  /\  A. t  e.  T  (
0  <_  ( h `  t )  /\  (
h `  t )  <_  1 ) ) }  <-> 
( g  e.  A  /\  ( ( g `  Z )  =  0  /\  A. t  e.  T  ( 0  <_ 
( g `  t
)  /\  ( g `  t )  <_  1
) ) ) )
6656, 65sylib 190 . . . . . . . . . . . 12  |-  ( (
ph  /\  g  e.  Q )  ->  (
g  e.  A  /\  ( ( g `  Z )  =  0  /\  A. t  e.  T  ( 0  <_ 
( g `  t
)  /\  ( g `  t )  <_  1
) ) ) )
6766simpld 447 . . . . . . . . . . 11  |-  ( (
ph  /\  g  e.  Q )  ->  g  e.  A )
6854, 67sseldd 3350 . . . . . . . . . 10  |-  ( (
ph  /\  g  e.  Q )  ->  g  e.  ( J  Cn  K
) )
6968ad2ant2r 729 . . . . . . . . 9  |-  ( ( ( ph  /\  s  e.  ( T  \  U
) )  /\  (
g  e.  Q  /\  0  <  ( g `  s ) ) )  ->  g  e.  ( J  Cn  K ) )
70 nfcv 2573 . . . . . . . . . 10  |-  F/_ t
0
71 nfcv 2573 . . . . . . . . . 10  |-  F/_ t
g
72 nfv 1630 . . . . . . . . . . 11  |-  F/ t  g  e.  ( J  Cn  K )
734, 72nfan 1847 . . . . . . . . . 10  |-  F/ t ( ph  /\  g  e.  ( J  Cn  K
) )
74 eqid 2437 . . . . . . . . . 10  |-  { t  e.  T  |  0  <  ( g `  t ) }  =  { t  e.  T  |  0  <  (
g `  t ) }
75 0xr 9132 . . . . . . . . . . 11  |-  0  e.  RR*
7675a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  g  e.  ( J  Cn  K
) )  ->  0  e.  RR* )
77 simpr 449 . . . . . . . . . 10  |-  ( (
ph  /\  g  e.  ( J  Cn  K
) )  ->  g  e.  ( J  Cn  K
) )
7870, 71, 73, 11, 13, 74, 76, 77rfcnpre1 27667 . . . . . . . . 9  |-  ( (
ph  /\  g  e.  ( J  Cn  K
) )  ->  { t  e.  T  |  0  <  ( g `  t ) }  e.  J )
7953, 69, 78syl2anc 644 . . . . . . . 8  |-  ( ( ( ph  /\  s  e.  ( T  \  U
) )  /\  (
g  e.  Q  /\  0  <  ( g `  s ) ) )  ->  { t  e.  T  |  0  < 
( g `  t
) }  e.  J
)
80 eqidd 2438 . . . . . . . . . 10  |-  ( (
ph  /\  g  e.  Q )  ->  { t  e.  T  |  0  <  ( g `  t ) }  =  { t  e.  T  |  0  <  (
g `  t ) } )
81 nfv 1630 . . . . . . . . . . 11  |-  F/ h { t  e.  T  |  0  <  (
g `  t ) }  =  { t  e.  T  |  0  <  ( g `  t
) }
82 nfcv 2573 . . . . . . . . . . 11  |-  F/_ h
g
8359breq2d 4225 . . . . . . . . . . . . 13  |-  ( h  =  g  ->  (
0  <  ( h `  t )  <->  0  <  ( g `  t ) ) )
8483rabbidv 2949 . . . . . . . . . . . 12  |-  ( h  =  g  ->  { t  e.  T  |  0  <  ( h `  t ) }  =  { t  e.  T  |  0  <  (
g `  t ) } )
8584eqeq2d 2448 . . . . . . . . . . 11  |-  ( h  =  g  ->  ( { t  e.  T  |  0  <  (
g `  t ) }  =  { t  e.  T  |  0  <  ( h `  t
) }  <->  { t  e.  T  |  0  <  ( g `  t
) }  =  {
t  e.  T  | 
0  <  ( g `  t ) } ) )
8681, 82, 10, 85rspcegf 27671 . . . . . . . . . 10  |-  ( ( g  e.  Q  /\  { t  e.  T  | 
0  <  ( g `  t ) }  =  { t  e.  T  |  0  <  (
g `  t ) } )  ->  E. h  e.  Q  { t  e.  T  |  0  <  ( g `  t
) }  =  {
t  e.  T  | 
0  <  ( h `  t ) } )
8755, 80, 86syl2anc 644 . . . . . . . . 9  |-  ( (
ph  /\  g  e.  Q )  ->  E. h  e.  Q  { t  e.  T  |  0  <  ( g `  t
) }  =  {
t  e.  T  | 
0  <  ( h `  t ) } )
8887ad2ant2r 729 . . . . . . . 8  |-  ( ( ( ph  /\  s  e.  ( T  \  U
) )  /\  (
g  e.  Q  /\  0  <  ( g `  s ) ) )  ->  E. h  e.  Q  { t  e.  T  |  0  <  (
g `  t ) }  =  { t  e.  T  |  0  <  ( h `  t
) } )
89 eqeq1 2443 . . . . . . . . . 10  |-  ( w  =  { t  e.  T  |  0  < 
( g `  t
) }  ->  (
w  =  { t  e.  T  |  0  <  ( h `  t ) }  <->  { t  e.  T  |  0  <  ( g `  t
) }  =  {
t  e.  T  | 
0  <  ( h `  t ) } ) )
9089rexbidv 2727 . . . . . . . . 9  |-  ( w  =  { t  e.  T  |  0  < 
( g `  t
) }  ->  ( E. h  e.  Q  w  =  { t  e.  T  |  0  <  ( h `  t
) }  <->  E. h  e.  Q  { t  e.  T  |  0  <  ( g `  t
) }  =  {
t  e.  T  | 
0  <  ( h `  t ) } ) )
9190elrab 3093 . . . . . . . 8  |-  ( { t  e.  T  | 
0  <  ( g `  t ) }  e.  { w  e.  J  |  E. h  e.  Q  w  =  { t  e.  T  |  0  <  ( h `  t
) } }  <->  ( {
t  e.  T  | 
0  <  ( g `  t ) }  e.  J  /\  E. h  e.  Q  { t  e.  T  |  0  < 
( g `  t
) }  =  {
t  e.  T  | 
0  <  ( h `  t ) } ) )
9279, 88, 91sylanbrc 647 . . . . . . 7  |-  ( ( ( ph  /\  s  e.  ( T  \  U
) )  /\  (
g  e.  Q  /\  0  <  ( g `  s ) ) )  ->  { t  e.  T  |  0  < 
( g `  t
) }  e.  {
w  e.  J  |  E. h  e.  Q  w  =  { t  e.  T  |  0  <  ( h `  t
) } } )
93 stoweidlem46.7 . . . . . . 7  |-  W  =  { w  e.  J  |  E. h  e.  Q  w  =  { t  e.  T  |  0  <  ( h `  t
) } }
9492, 93syl6eleqr 2528 . . . . . 6  |-  ( ( ( ph  /\  s  e.  ( T  \  U
) )  /\  (
g  e.  Q  /\  0  <  ( g `  s ) ) )  ->  { t  e.  T  |  0  < 
( g `  t
) }  e.  W
)
95 nfcv 2573 . . . . . . . 8  |-  F/_ w { t  e.  T  |  0  <  (
g `  t ) }
96 nfv 1630 . . . . . . . . 9  |-  F/ w  s  e.  { t  e.  T  |  0  <  ( g `  t
) }
97 nfrab1 2889 . . . . . . . . . . 11  |-  F/_ w { w  e.  J  |  E. h  e.  Q  w  =  { t  e.  T  |  0  <  ( h `  t
) } }
9893, 97nfcxfr 2570 . . . . . . . . . 10  |-  F/_ w W
9998nfel2 2585 . . . . . . . . 9  |-  F/ w { t  e.  T  |  0  <  (
g `  t ) }  e.  W
10096, 99nfan 1847 . . . . . . . 8  |-  F/ w
( s  e.  {
t  e.  T  | 
0  <  ( g `  t ) }  /\  { t  e.  T  | 
0  <  ( g `  t ) }  e.  W )
101 eleq2 2498 . . . . . . . . 9  |-  ( w  =  { t  e.  T  |  0  < 
( g `  t
) }  ->  (
s  e.  w  <->  s  e.  { t  e.  T  | 
0  <  ( g `  t ) } ) )
102 eleq1 2497 . . . . . . . . 9  |-  ( w  =  { t  e.  T  |  0  < 
( g `  t
) }  ->  (
w  e.  W  <->  { t  e.  T  |  0  <  ( g `  t
) }  e.  W
) )
103101, 102anbi12d 693 . . . . . . . 8  |-  ( w  =  { t  e.  T  |  0  < 
( g `  t
) }  ->  (
( s  e.  w  /\  w  e.  W
)  <->  ( s  e. 
{ t  e.  T  |  0  <  (
g `  t ) }  /\  { t  e.  T  |  0  < 
( g `  t
) }  e.  W
) ) )
10495, 100, 103spcegf 3033 . . . . . . 7  |-  ( { t  e.  T  | 
0  <  ( g `  t ) }  e.  _V  ->  ( ( s  e.  { t  e.  T  |  0  < 
( g `  t
) }  /\  {
t  e.  T  | 
0  <  ( g `  t ) }  e.  W )  ->  E. w
( s  e.  w  /\  w  e.  W
) ) )
105104imp 420 . . . . . 6  |-  ( ( { t  e.  T  |  0  <  (
g `  t ) }  e.  _V  /\  (
s  e.  { t  e.  T  |  0  <  ( g `  t ) }  /\  { t  e.  T  | 
0  <  ( g `  t ) }  e.  W ) )  ->  E. w ( s  e.  w  /\  w  e.  W ) )
10645, 52, 94, 105syl12anc 1183 . . . . 5  |-  ( ( ( ph  /\  s  e.  ( T  \  U
) )  /\  (
g  e.  Q  /\  0  <  ( g `  s ) ) )  ->  E. w ( s  e.  w  /\  w  e.  W ) )
10741, 106exlimddv 1649 . . . 4  |-  ( (
ph  /\  s  e.  ( T  \  U ) )  ->  E. w
( s  e.  w  /\  w  e.  W
) )
108 nfcv 2573 . . . . 5  |-  F/_ w
s
109108, 98elunif 27664 . . . 4  |-  ( s  e.  U. W  <->  E. w
( s  e.  w  /\  w  e.  W
) )
110107, 109sylibr 205 . . 3  |-  ( (
ph  /\  s  e.  ( T  \  U ) )  ->  s  e.  U. W )
111110ex 425 . 2  |-  ( ph  ->  ( s  e.  ( T  \  U )  ->  s  e.  U. W ) )
112111ssrdv 3355 1  |-  ( ph  ->  ( T  \  U
)  C_  U. W )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    /\ w3a 937   E.wex 1551   F/wnf 1554    = wceq 1653    e. wcel 1726   F/_wnfc 2560    =/= wne 2600   A.wral 2706   E.wrex 2707   {crab 2710   _Vcvv 2957    \ cdif 3318    C_ wss 3321   U.cuni 4016   class class class wbr 4213    e. cmpt 4267   ran crn 4880   ` cfv 5455  (class class class)co 6082   RRcr 8990   0cc0 8991   1c1 8992    + caddc 8994    x. cmul 8996   RR*cxr 9120    < clt 9121    <_ cle 9122   (,)cioo 10917   topGenctg 13666    Cn ccn 17289   Compccmp 17450
This theorem is referenced by:  stoweidlem50  27776
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418  ax-rep 4321  ax-sep 4331  ax-nul 4339  ax-pow 4378  ax-pr 4404  ax-un 4702  ax-inf2 7597  ax-cnex 9047  ax-resscn 9048  ax-1cn 9049  ax-icn 9050  ax-addcl 9051  ax-addrcl 9052  ax-mulcl 9053  ax-mulrcl 9054  ax-mulcom 9055  ax-addass 9056  ax-mulass 9057  ax-distr 9058  ax-i2m1 9059  ax-1ne0 9060  ax-1rid 9061  ax-rnegex 9062  ax-rrecex 9063  ax-cnre 9064  ax-pre-lttri 9065  ax-pre-lttrn 9066  ax-pre-ltadd 9067  ax-pre-mulgt0 9068  ax-pre-sup 9069  ax-mulf 9071
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2286  df-mo 2287  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-nel 2603  df-ral 2711  df-rex 2712  df-reu 2713  df-rmo 2714  df-rab 2715  df-v 2959  df-sbc 3163  df-csb 3253  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-pss 3337  df-nul 3630  df-if 3741  df-pw 3802  df-sn 3821  df-pr 3822  df-tp 3823  df-op 3824  df-uni 4017  df-int 4052  df-iun 4096  df-iin 4097  df-br 4214  df-opab 4268  df-mpt 4269  df-tr 4304  df-eprel 4495  df-id 4499  df-po 4504  df-so 4505  df-fr 4542  df-se 4543  df-we 4544  df-ord 4585  df-on 4586  df-lim 4587  df-suc 4588  df-om 4847  df-xp 4885  df-rel 4886  df-cnv 4887  df-co 4888  df-dm 4889  df-rn 4890  df-res 4891  df-ima 4892  df-iota 5419  df-fun 5457  df-fn 5458  df-f 5459  df-f1 5460  df-fo 5461  df-f1o 5462  df-fv 5463  df-isom 5464  df-ov 6085  df-oprab 6086  df-mpt2 6087  df-of 6306  df-1st 6350  df-2nd 6351  df-riota 6550  df-recs 6634  df-rdg 6669  df-1o 6725  df-2o 6726  df-oadd 6729  df-er 6906  df-map 7021  df-ixp 7065  df-en 7111  df-dom 7112  df-sdom 7113  df-fin 7114  df-fi 7417  df-sup 7447  df-oi 7480  df-card 7827  df-cda 8049  df-pnf 9123  df-mnf 9124  df-xr 9125  df-ltxr 9126  df-le 9127  df-sub 9294  df-neg 9295  df-div 9679  df-nn 10002  df-2 10059  df-3 10060  df-4 10061  df-5 10062  df-6 10063  df-7 10064  df-8 10065  df-9 10066  df-10 10067  df-n0 10223  df-z 10284  df-dec 10384  df-uz 10490  df-q 10576  df-rp 10614  df-xneg 10711  df-xadd 10712  df-xmul 10713  df-ioo 10921  df-icc 10924  df-fz 11045  df-fzo 11137  df-seq 11325  df-exp 11384  df-hash 11620  df-cj 11905  df-re 11906  df-im 11907  df-sqr 12041  df-abs 12042  df-struct 13472  df-ndx 13473  df-slot 13474  df-base 13475  df-sets 13476  df-ress 13477  df-plusg 13543  df-mulr 13544  df-starv 13545  df-sca 13546  df-vsca 13547  df-tset 13549  df-ple 13550  df-ds 13552  df-unif 13553  df-hom 13554  df-cco 13555  df-rest 13651  df-topn 13652  df-topgen 13668  df-pt 13669  df-prds 13672  df-xrs 13727  df-0g 13728  df-gsum 13729  df-qtop 13734  df-imas 13735  df-xps 13737  df-mre 13812  df-mrc 13813  df-acs 13815  df-mnd 14691  df-submnd 14740  df-mulg 14816  df-cntz 15117  df-cmn 15415  df-psmet 16695  df-xmet 16696  df-met 16697  df-bl 16698  df-mopn 16699  df-cnfld 16705  df-top 16964  df-bases 16966  df-topon 16967  df-topsp 16968  df-cn 17292  df-cnp 17293  df-cmp 17451  df-tx 17595  df-hmeo 17788  df-xms 18351  df-ms 18352  df-tms 18353
  Copyright terms: Public domain W3C validator