Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem50 Unicode version

Theorem stoweidlem50 27902
Description: This lemma proves that sets U(t) as defined in Lemma 1 of [BrosowskiDeutsh] p. 90, contain a finite subcover of T \ U. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem50.1  |-  F/_ t U
stoweidlem50.2  |-  F/ t
ph
stoweidlem50.3  |-  K  =  ( topGen `  ran  (,) )
stoweidlem50.4  |-  Q  =  { h  e.  A  |  ( ( h `
 Z )  =  0  /\  A. t  e.  T  ( 0  <_  ( h `  t )  /\  (
h `  t )  <_  1 ) ) }
stoweidlem50.5  |-  W  =  { w  e.  J  |  E. h  e.  Q  w  =  { t  e.  T  |  0  <  ( h `  t
) } }
stoweidlem50.6  |-  T  = 
U. J
stoweidlem50.7  |-  C  =  ( J  Cn  K
)
stoweidlem50.8  |-  ( ph  ->  J  e.  Comp )
stoweidlem50.9  |-  ( ph  ->  A  C_  C )
stoweidlem50.10  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
stoweidlem50.11  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
stoweidlem50.12  |-  ( (
ph  /\  x  e.  RR )  ->  ( t  e.  T  |->  x )  e.  A )
stoweidlem50.13  |-  ( (
ph  /\  ( r  e.  T  /\  t  e.  T  /\  r  =/=  t ) )  ->  E. q  e.  A  ( q `  r
)  =/=  ( q `
 t ) )
stoweidlem50.14  |-  ( ph  ->  U  e.  J )
stoweidlem50.15  |-  ( ph  ->  Z  e.  U )
Assertion
Ref Expression
stoweidlem50  |-  ( ph  ->  E. u ( u  e.  Fin  /\  u  C_  W  /\  ( T 
\  U )  C_  U. u ) )
Distinct variable groups:    u, J    u, T    u, U    u, W    f, g, h, t, T    f, q, g, t, T    f, r, A, q, t    x, f, q, t, T    Q, f, g    U, f, g, q    f, Z, g, h, t    ph, f,
g, q    w, g, h, t, T    A, g, h    g, W    Z, q, x    T, r    U, r    ph, r    t, J, w   
t, K    ph, u    w, Q    x, A    x, U    ph, x
Allowed substitution hints:    ph( w, t, h)    A( w, u)    C( x, w, u, t, f, g, h, r, q)    Q( x, u, t, h, r, q)    U( w, t, h)    J( x, f, g, h, r, q)    K( x, w, u, f, g, h, r, q)    W( x, w, t, f, h, r, q)    Z( w, u, r)

Proof of Theorem stoweidlem50
Dummy variable  c is distinct from all other variables.
StepHypRef Expression
1 stoweidlem50.1 . . 3  |-  F/_ t U
2 stoweidlem50.4 . . . 4  |-  Q  =  { h  e.  A  |  ( ( h `
 Z )  =  0  /\  A. t  e.  T  ( 0  <_  ( h `  t )  /\  (
h `  t )  <_  1 ) ) }
3 nfrab1 2733 . . . 4  |-  F/_ h { h  e.  A  |  ( ( h `
 Z )  =  0  /\  A. t  e.  T  ( 0  <_  ( h `  t )  /\  (
h `  t )  <_  1 ) ) }
42, 3nfcxfr 2429 . . 3  |-  F/_ h Q
5 nfv 1609 . . 3  |-  F/ q
ph
6 stoweidlem50.2 . . 3  |-  F/ t
ph
7 stoweidlem50.3 . . 3  |-  K  =  ( topGen `  ran  (,) )
8 stoweidlem50.5 . . 3  |-  W  =  { w  e.  J  |  E. h  e.  Q  w  =  { t  e.  T  |  0  <  ( h `  t
) } }
9 stoweidlem50.6 . . 3  |-  T  = 
U. J
10 stoweidlem50.8 . . 3  |-  ( ph  ->  J  e.  Comp )
11 stoweidlem50.9 . . . 4  |-  ( ph  ->  A  C_  C )
12 stoweidlem50.7 . . . 4  |-  C  =  ( J  Cn  K
)
1311, 12syl6sseq 3237 . . 3  |-  ( ph  ->  A  C_  ( J  Cn  K ) )
14 stoweidlem50.10 . . 3  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
15 stoweidlem50.11 . . 3  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
16 stoweidlem50.12 . . 3  |-  ( (
ph  /\  x  e.  RR )  ->  ( t  e.  T  |->  x )  e.  A )
17 stoweidlem50.13 . . 3  |-  ( (
ph  /\  ( r  e.  T  /\  t  e.  T  /\  r  =/=  t ) )  ->  E. q  e.  A  ( q `  r
)  =/=  ( q `
 t ) )
18 stoweidlem50.14 . . 3  |-  ( ph  ->  U  e.  J )
19 stoweidlem50.15 . . 3  |-  ( ph  ->  Z  e.  U )
20 uniexg 4533 . . . . 5  |-  ( J  e.  Comp  ->  U. J  e.  _V )
2110, 20syl 15 . . . 4  |-  ( ph  ->  U. J  e.  _V )
229, 21syl5eqel 2380 . . 3  |-  ( ph  ->  T  e.  _V )
231, 4, 5, 6, 7, 2, 8, 9, 10, 13, 14, 15, 16, 17, 18, 19, 22stoweidlem46 27898 . 2  |-  ( ph  ->  ( T  \  U
)  C_  U. W )
24 dfin4 3422 . . . . . . . . . . . . 13  |-  ( T  i^i  U )  =  ( T  \  ( T  \  U ) )
25 elssuni 3871 . . . . . . . . . . . . . . . 16  |-  ( U  e.  J  ->  U  C_ 
U. J )
2618, 25syl 15 . . . . . . . . . . . . . . 15  |-  ( ph  ->  U  C_  U. J )
2726, 9syl6sseqr 3238 . . . . . . . . . . . . . 14  |-  ( ph  ->  U  C_  T )
28 dfss1 3386 . . . . . . . . . . . . . 14  |-  ( U 
C_  T  <->  ( T  i^i  U )  =  U )
2927, 28sylib 188 . . . . . . . . . . . . 13  |-  ( ph  ->  ( T  i^i  U
)  =  U )
3024, 29syl5eqr 2342 . . . . . . . . . . . 12  |-  ( ph  ->  ( T  \  ( T  \  U ) )  =  U )
3130, 18eqeltrd 2370 . . . . . . . . . . 11  |-  ( ph  ->  ( T  \  ( T  \  U ) )  e.  J )
32 cmptop 17138 . . . . . . . . . . . . . 14  |-  ( J  e.  Comp  ->  J  e. 
Top )
3310, 32syl 15 . . . . . . . . . . . . 13  |-  ( ph  ->  J  e.  Top )
34 difss 3316 . . . . . . . . . . . . . 14  |-  ( T 
\  U )  C_  T
3534a1i 10 . . . . . . . . . . . . 13  |-  ( ph  ->  ( T  \  U
)  C_  T )
3633, 35jca 518 . . . . . . . . . . . 12  |-  ( ph  ->  ( J  e.  Top  /\  ( T  \  U
)  C_  T )
)
379iscld2 16781 . . . . . . . . . . . 12  |-  ( ( J  e.  Top  /\  ( T  \  U ) 
C_  T )  -> 
( ( T  \  U )  e.  (
Clsd `  J )  <->  ( T  \  ( T 
\  U ) )  e.  J ) )
3836, 37syl 15 . . . . . . . . . . 11  |-  ( ph  ->  ( ( T  \  U )  e.  (
Clsd `  J )  <->  ( T  \  ( T 
\  U ) )  e.  J ) )
3931, 38mpbird 223 . . . . . . . . . 10  |-  ( ph  ->  ( T  \  U
)  e.  ( Clsd `  J ) )
4010, 39jca 518 . . . . . . . . 9  |-  ( ph  ->  ( J  e.  Comp  /\  ( T  \  U
)  e.  ( Clsd `  J ) ) )
41 cmpcld 17145 . . . . . . . . 9  |-  ( ( J  e.  Comp  /\  ( T  \  U )  e.  ( Clsd `  J
) )  ->  ( Jt  ( T  \  U ) )  e.  Comp )
4240, 41syl 15 . . . . . . . 8  |-  ( ph  ->  ( Jt  ( T  \  U ) )  e. 
Comp )
439cmpsub 17143 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  ( T  \  U ) 
C_  T )  -> 
( ( Jt  ( T 
\  U ) )  e.  Comp  <->  A. c  e.  ~P  J ( ( T 
\  U )  C_  U. c  ->  E. u  e.  ( ~P c  i^i 
Fin ) ( T 
\  U )  C_  U. u ) ) )
4436, 43syl 15 . . . . . . . 8  |-  ( ph  ->  ( ( Jt  ( T 
\  U ) )  e.  Comp  <->  A. c  e.  ~P  J ( ( T 
\  U )  C_  U. c  ->  E. u  e.  ( ~P c  i^i 
Fin ) ( T 
\  U )  C_  U. u ) ) )
4542, 44mpbid 201 . . . . . . 7  |-  ( ph  ->  A. c  e.  ~P  J ( ( T 
\  U )  C_  U. c  ->  E. u  e.  ( ~P c  i^i 
Fin ) ( T 
\  U )  C_  U. u ) )
46 ssrab2 3271 . . . . . . . . 9  |-  { w  e.  J  |  E. h  e.  Q  w  =  { t  e.  T  |  0  <  (
h `  t ) } }  C_  J
478, 46eqsstri 3221 . . . . . . . 8  |-  W  C_  J
48 rabexg 4180 . . . . . . . . . . 11  |-  ( J  e.  Comp  ->  { w  e.  J  |  E. h  e.  Q  w  =  { t  e.  T  |  0  <  (
h `  t ) } }  e.  _V )
4910, 48syl 15 . . . . . . . . . 10  |-  ( ph  ->  { w  e.  J  |  E. h  e.  Q  w  =  { t  e.  T  |  0  <  ( h `  t
) } }  e.  _V )
508, 49syl5eqel 2380 . . . . . . . . 9  |-  ( ph  ->  W  e.  _V )
51 elpwg 3645 . . . . . . . . 9  |-  ( W  e.  _V  ->  ( W  e.  ~P J  <->  W 
C_  J ) )
5250, 51syl 15 . . . . . . . 8  |-  ( ph  ->  ( W  e.  ~P J 
<->  W  C_  J )
)
5347, 52mpbiri 224 . . . . . . 7  |-  ( ph  ->  W  e.  ~P J
)
5445, 53jca 518 . . . . . 6  |-  ( ph  ->  ( A. c  e. 
~P  J ( ( T  \  U ) 
C_  U. c  ->  E. u  e.  ( ~P c  i^i 
Fin ) ( T 
\  U )  C_  U. u )  /\  W  e.  ~P J ) )
55 unieq 3852 . . . . . . . . 9  |-  ( c  =  W  ->  U. c  =  U. W )
5655sseq2d 3219 . . . . . . . 8  |-  ( c  =  W  ->  (
( T  \  U
)  C_  U. c  <->  ( T  \  U ) 
C_  U. W ) )
57 pweq 3641 . . . . . . . . . 10  |-  ( c  =  W  ->  ~P c  =  ~P W
)
5857ineq1d 3382 . . . . . . . . 9  |-  ( c  =  W  ->  ( ~P c  i^i  Fin )  =  ( ~P W  i^i  Fin ) )
59 rexeq 2750 . . . . . . . . 9  |-  ( ( ~P c  i^i  Fin )  =  ( ~P W  i^i  Fin )  -> 
( E. u  e.  ( ~P c  i^i 
Fin ) ( T 
\  U )  C_  U. u  <->  E. u  e.  ( ~P W  i^i  Fin ) ( T  \  U )  C_  U. u
) )
6058, 59syl 15 . . . . . . . 8  |-  ( c  =  W  ->  ( E. u  e.  ( ~P c  i^i  Fin )
( T  \  U
)  C_  U. u  <->  E. u  e.  ( ~P W  i^i  Fin )
( T  \  U
)  C_  U. u
) )
6156, 60imbi12d 311 . . . . . . 7  |-  ( c  =  W  ->  (
( ( T  \  U )  C_  U. c  ->  E. u  e.  ( ~P c  i^i  Fin ) ( T  \  U )  C_  U. u
)  <->  ( ( T 
\  U )  C_  U. W  ->  E. u  e.  ( ~P W  i^i  Fin ) ( T  \  U )  C_  U. u
) ) )
6261rspccva 2896 . . . . . 6  |-  ( ( A. c  e.  ~P  J ( ( T 
\  U )  C_  U. c  ->  E. u  e.  ( ~P c  i^i 
Fin ) ( T 
\  U )  C_  U. u )  /\  W  e.  ~P J )  -> 
( ( T  \  U )  C_  U. W  ->  E. u  e.  ( ~P W  i^i  Fin ) ( T  \  U )  C_  U. u
) )
6354, 62syl 15 . . . . 5  |-  ( ph  ->  ( ( T  \  U )  C_  U. W  ->  E. u  e.  ( ~P W  i^i  Fin ) ( T  \  U )  C_  U. u
) )
6463imp 418 . . . 4  |-  ( (
ph  /\  ( T  \  U )  C_  U. W
)  ->  E. u  e.  ( ~P W  i^i  Fin ) ( T  \  U )  C_  U. u
)
65 df-rex 2562 . . . 4  |-  ( E. u  e.  ( ~P W  i^i  Fin )
( T  \  U
)  C_  U. u  <->  E. u ( u  e.  ( ~P W  i^i  Fin )  /\  ( T 
\  U )  C_  U. u ) )
6664, 65sylib 188 . . 3  |-  ( (
ph  /\  ( T  \  U )  C_  U. W
)  ->  E. u
( u  e.  ( ~P W  i^i  Fin )  /\  ( T  \  U )  C_  U. u
) )
67 simprl 732 . . . . . . 7  |-  ( ( ( ph  /\  ( T  \  U )  C_  U. W )  /\  (
u  e.  ( ~P W  i^i  Fin )  /\  ( T  \  U
)  C_  U. u
) )  ->  u  e.  ( ~P W  i^i  Fin ) )
68 elin 3371 . . . . . . . 8  |-  ( u  e.  ( ~P W  i^i  Fin )  <->  ( u  e.  ~P W  /\  u  e.  Fin ) )
6968simprbi 450 . . . . . . 7  |-  ( u  e.  ( ~P W  i^i  Fin )  ->  u  e.  Fin )
7067, 69syl 15 . . . . . 6  |-  ( ( ( ph  /\  ( T  \  U )  C_  U. W )  /\  (
u  e.  ( ~P W  i^i  Fin )  /\  ( T  \  U
)  C_  U. u
) )  ->  u  e.  Fin )
7168simplbi 446 . . . . . . . 8  |-  ( u  e.  ( ~P W  i^i  Fin )  ->  u  e.  ~P W )
7267, 71syl 15 . . . . . . 7  |-  ( ( ( ph  /\  ( T  \  U )  C_  U. W )  /\  (
u  e.  ( ~P W  i^i  Fin )  /\  ( T  \  U
)  C_  U. u
) )  ->  u  e.  ~P W )
73 elpwi 3646 . . . . . . 7  |-  ( u  e.  ~P W  ->  u  C_  W )
7472, 73syl 15 . . . . . 6  |-  ( ( ( ph  /\  ( T  \  U )  C_  U. W )  /\  (
u  e.  ( ~P W  i^i  Fin )  /\  ( T  \  U
)  C_  U. u
) )  ->  u  C_  W )
75 simprr 733 . . . . . 6  |-  ( ( ( ph  /\  ( T  \  U )  C_  U. W )  /\  (
u  e.  ( ~P W  i^i  Fin )  /\  ( T  \  U
)  C_  U. u
) )  ->  ( T  \  U )  C_  U. u )
7670, 74, 753jca 1132 . . . . 5  |-  ( ( ( ph  /\  ( T  \  U )  C_  U. W )  /\  (
u  e.  ( ~P W  i^i  Fin )  /\  ( T  \  U
)  C_  U. u
) )  ->  (
u  e.  Fin  /\  u  C_  W  /\  ( T  \  U )  C_  U. u ) )
7776ex 423 . . . 4  |-  ( (
ph  /\  ( T  \  U )  C_  U. W
)  ->  ( (
u  e.  ( ~P W  i^i  Fin )  /\  ( T  \  U
)  C_  U. u
)  ->  ( u  e.  Fin  /\  u  C_  W  /\  ( T  \  U )  C_  U. u
) ) )
7877eximdv 1612 . . 3  |-  ( (
ph  /\  ( T  \  U )  C_  U. W
)  ->  ( E. u ( u  e.  ( ~P W  i^i  Fin )  /\  ( T 
\  U )  C_  U. u )  ->  E. u
( u  e.  Fin  /\  u  C_  W  /\  ( T  \  U ) 
C_  U. u ) ) )
7966, 78mpd 14 . 2  |-  ( (
ph  /\  ( T  \  U )  C_  U. W
)  ->  E. u
( u  e.  Fin  /\  u  C_  W  /\  ( T  \  U ) 
C_  U. u ) )
8023, 79mpdan 649 1  |-  ( ph  ->  E. u ( u  e.  Fin  /\  u  C_  W  /\  ( T 
\  U )  C_  U. u ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934   E.wex 1531   F/wnf 1534    = wceq 1632    e. wcel 1696   F/_wnfc 2419    =/= wne 2459   A.wral 2556   E.wrex 2557   {crab 2560   _Vcvv 2801    \ cdif 3162    i^i cin 3164    C_ wss 3165   ~Pcpw 3638   U.cuni 3843   class class class wbr 4039    e. cmpt 4093   ran crn 4706   ` cfv 5271  (class class class)co 5874   Fincfn 6879   RRcr 8752   0cc0 8753   1c1 8754    + caddc 8756    x. cmul 8758    < clt 8883    <_ cle 8884   (,)cioo 10672   ↾t crest 13341   topGenctg 13358   Topctop 16647   Clsdccld 16769    Cn ccn 16970   Compccmp 17129
This theorem is referenced by:  stoweidlem53  27905
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831  ax-mulf 8833
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-of 6094  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-er 6676  df-map 6790  df-ixp 6834  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-fi 7181  df-sup 7210  df-oi 7241  df-card 7588  df-cda 7810  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-7 9825  df-8 9826  df-9 9827  df-10 9828  df-n0 9982  df-z 10041  df-dec 10141  df-uz 10247  df-q 10333  df-rp 10371  df-xneg 10468  df-xadd 10469  df-xmul 10470  df-ioo 10676  df-icc 10679  df-fz 10799  df-fzo 10887  df-seq 11063  df-exp 11121  df-hash 11354  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-struct 13166  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-mulr 13238  df-starv 13239  df-sca 13240  df-vsca 13241  df-tset 13243  df-ple 13244  df-ds 13246  df-hom 13248  df-cco 13249  df-rest 13343  df-topn 13344  df-topgen 13360  df-pt 13361  df-prds 13364  df-xrs 13419  df-0g 13420  df-gsum 13421  df-qtop 13426  df-imas 13427  df-xps 13429  df-mre 13504  df-mrc 13505  df-acs 13507  df-mnd 14383  df-submnd 14432  df-mulg 14508  df-cntz 14809  df-cmn 15107  df-xmet 16389  df-met 16390  df-bl 16391  df-mopn 16392  df-cnfld 16394  df-top 16652  df-bases 16654  df-topon 16655  df-topsp 16656  df-cld 16772  df-cn 16973  df-cnp 16974  df-cmp 17130  df-tx 17273  df-hmeo 17462  df-xms 17901  df-ms 17902  df-tms 17903
  Copyright terms: Public domain W3C validator