Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem50 Unicode version

Theorem stoweidlem50 27467
Description: This lemma proves that sets U(t) as defined in Lemma 1 of [BrosowskiDeutsh] p. 90, contain a finite subcover of T \ U. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem50.1  |-  F/_ t U
stoweidlem50.2  |-  F/ t
ph
stoweidlem50.3  |-  K  =  ( topGen `  ran  (,) )
stoweidlem50.4  |-  Q  =  { h  e.  A  |  ( ( h `
 Z )  =  0  /\  A. t  e.  T  ( 0  <_  ( h `  t )  /\  (
h `  t )  <_  1 ) ) }
stoweidlem50.5  |-  W  =  { w  e.  J  |  E. h  e.  Q  w  =  { t  e.  T  |  0  <  ( h `  t
) } }
stoweidlem50.6  |-  T  = 
U. J
stoweidlem50.7  |-  C  =  ( J  Cn  K
)
stoweidlem50.8  |-  ( ph  ->  J  e.  Comp )
stoweidlem50.9  |-  ( ph  ->  A  C_  C )
stoweidlem50.10  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
stoweidlem50.11  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
stoweidlem50.12  |-  ( (
ph  /\  x  e.  RR )  ->  ( t  e.  T  |->  x )  e.  A )
stoweidlem50.13  |-  ( (
ph  /\  ( r  e.  T  /\  t  e.  T  /\  r  =/=  t ) )  ->  E. q  e.  A  ( q `  r
)  =/=  ( q `
 t ) )
stoweidlem50.14  |-  ( ph  ->  U  e.  J )
stoweidlem50.15  |-  ( ph  ->  Z  e.  U )
Assertion
Ref Expression
stoweidlem50  |-  ( ph  ->  E. u ( u  e.  Fin  /\  u  C_  W  /\  ( T 
\  U )  C_  U. u ) )
Distinct variable groups:    u, J    u, T    u, U    u, W    f, g, h, t, T    f, q, g, t, T    f, r, A, q, t    x, f, q, t, T    Q, f, g    U, f, g, q    f, Z, g, h, t    ph, f,
g, q    w, g, h, t, T    A, g, h    g, W    Z, q, x    T, r    U, r    ph, r    t, J, w   
t, K    ph, u    w, Q    x, A    x, U    ph, x
Allowed substitution hints:    ph( w, t, h)    A( w, u)    C( x, w, u, t, f, g, h, r, q)    Q( x, u, t, h, r, q)    U( w, t, h)    J( x, f, g, h, r, q)    K( x, w, u, f, g, h, r, q)    W( x, w, t, f, h, r, q)    Z( w, u, r)

Proof of Theorem stoweidlem50
Dummy variable  c is distinct from all other variables.
StepHypRef Expression
1 stoweidlem50.1 . . 3  |-  F/_ t U
2 stoweidlem50.4 . . . 4  |-  Q  =  { h  e.  A  |  ( ( h `
 Z )  =  0  /\  A. t  e.  T  ( 0  <_  ( h `  t )  /\  (
h `  t )  <_  1 ) ) }
3 nfrab1 2831 . . . 4  |-  F/_ h { h  e.  A  |  ( ( h `
 Z )  =  0  /\  A. t  e.  T  ( 0  <_  ( h `  t )  /\  (
h `  t )  <_  1 ) ) }
42, 3nfcxfr 2520 . . 3  |-  F/_ h Q
5 nfv 1626 . . 3  |-  F/ q
ph
6 stoweidlem50.2 . . 3  |-  F/ t
ph
7 stoweidlem50.3 . . 3  |-  K  =  ( topGen `  ran  (,) )
8 stoweidlem50.5 . . 3  |-  W  =  { w  e.  J  |  E. h  e.  Q  w  =  { t  e.  T  |  0  <  ( h `  t
) } }
9 stoweidlem50.6 . . 3  |-  T  = 
U. J
10 stoweidlem50.8 . . 3  |-  ( ph  ->  J  e.  Comp )
11 stoweidlem50.9 . . . 4  |-  ( ph  ->  A  C_  C )
12 stoweidlem50.7 . . . 4  |-  C  =  ( J  Cn  K
)
1311, 12syl6sseq 3337 . . 3  |-  ( ph  ->  A  C_  ( J  Cn  K ) )
14 stoweidlem50.10 . . 3  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  +  ( g `  t ) ) )  e.  A )
15 stoweidlem50.11 . . 3  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
16 stoweidlem50.12 . . 3  |-  ( (
ph  /\  x  e.  RR )  ->  ( t  e.  T  |->  x )  e.  A )
17 stoweidlem50.13 . . 3  |-  ( (
ph  /\  ( r  e.  T  /\  t  e.  T  /\  r  =/=  t ) )  ->  E. q  e.  A  ( q `  r
)  =/=  ( q `
 t ) )
18 stoweidlem50.14 . . 3  |-  ( ph  ->  U  e.  J )
19 stoweidlem50.15 . . 3  |-  ( ph  ->  Z  e.  U )
20 uniexg 4646 . . . . 5  |-  ( J  e.  Comp  ->  U. J  e.  _V )
2110, 20syl 16 . . . 4  |-  ( ph  ->  U. J  e.  _V )
229, 21syl5eqel 2471 . . 3  |-  ( ph  ->  T  e.  _V )
231, 4, 5, 6, 7, 2, 8, 9, 10, 13, 14, 15, 16, 17, 18, 19, 22stoweidlem46 27463 . 2  |-  ( ph  ->  ( T  \  U
)  C_  U. W )
24 dfin4 3524 . . . . . . . . . . 11  |-  ( T  i^i  U )  =  ( T  \  ( T  \  U ) )
25 elssuni 3985 . . . . . . . . . . . . . 14  |-  ( U  e.  J  ->  U  C_ 
U. J )
2618, 25syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  U  C_  U. J )
2726, 9syl6sseqr 3338 . . . . . . . . . . . 12  |-  ( ph  ->  U  C_  T )
28 dfss1 3488 . . . . . . . . . . . 12  |-  ( U 
C_  T  <->  ( T  i^i  U )  =  U )
2927, 28sylib 189 . . . . . . . . . . 11  |-  ( ph  ->  ( T  i^i  U
)  =  U )
3024, 29syl5eqr 2433 . . . . . . . . . 10  |-  ( ph  ->  ( T  \  ( T  \  U ) )  =  U )
3130, 18eqeltrd 2461 . . . . . . . . 9  |-  ( ph  ->  ( T  \  ( T  \  U ) )  e.  J )
32 cmptop 17380 . . . . . . . . . . 11  |-  ( J  e.  Comp  ->  J  e. 
Top )
3310, 32syl 16 . . . . . . . . . 10  |-  ( ph  ->  J  e.  Top )
34 difssd 3418 . . . . . . . . . 10  |-  ( ph  ->  ( T  \  U
)  C_  T )
359iscld2 17015 . . . . . . . . . 10  |-  ( ( J  e.  Top  /\  ( T  \  U ) 
C_  T )  -> 
( ( T  \  U )  e.  (
Clsd `  J )  <->  ( T  \  ( T 
\  U ) )  e.  J ) )
3633, 34, 35syl2anc 643 . . . . . . . . 9  |-  ( ph  ->  ( ( T  \  U )  e.  (
Clsd `  J )  <->  ( T  \  ( T 
\  U ) )  e.  J ) )
3731, 36mpbird 224 . . . . . . . 8  |-  ( ph  ->  ( T  \  U
)  e.  ( Clsd `  J ) )
38 cmpcld 17387 . . . . . . . 8  |-  ( ( J  e.  Comp  /\  ( T  \  U )  e.  ( Clsd `  J
) )  ->  ( Jt  ( T  \  U ) )  e.  Comp )
3910, 37, 38syl2anc 643 . . . . . . 7  |-  ( ph  ->  ( Jt  ( T  \  U ) )  e. 
Comp )
409cmpsub 17385 . . . . . . . 8  |-  ( ( J  e.  Top  /\  ( T  \  U ) 
C_  T )  -> 
( ( Jt  ( T 
\  U ) )  e.  Comp  <->  A. c  e.  ~P  J ( ( T 
\  U )  C_  U. c  ->  E. u  e.  ( ~P c  i^i 
Fin ) ( T 
\  U )  C_  U. u ) ) )
4133, 34, 40syl2anc 643 . . . . . . 7  |-  ( ph  ->  ( ( Jt  ( T 
\  U ) )  e.  Comp  <->  A. c  e.  ~P  J ( ( T 
\  U )  C_  U. c  ->  E. u  e.  ( ~P c  i^i 
Fin ) ( T 
\  U )  C_  U. u ) ) )
4239, 41mpbid 202 . . . . . 6  |-  ( ph  ->  A. c  e.  ~P  J ( ( T 
\  U )  C_  U. c  ->  E. u  e.  ( ~P c  i^i 
Fin ) ( T 
\  U )  C_  U. u ) )
43 ssrab2 3371 . . . . . . . 8  |-  { w  e.  J  |  E. h  e.  Q  w  =  { t  e.  T  |  0  <  (
h `  t ) } }  C_  J
448, 43eqsstri 3321 . . . . . . 7  |-  W  C_  J
45 rabexg 4294 . . . . . . . . . 10  |-  ( J  e.  Comp  ->  { w  e.  J  |  E. h  e.  Q  w  =  { t  e.  T  |  0  <  (
h `  t ) } }  e.  _V )
4610, 45syl 16 . . . . . . . . 9  |-  ( ph  ->  { w  e.  J  |  E. h  e.  Q  w  =  { t  e.  T  |  0  <  ( h `  t
) } }  e.  _V )
478, 46syl5eqel 2471 . . . . . . . 8  |-  ( ph  ->  W  e.  _V )
48 elpwg 3749 . . . . . . . 8  |-  ( W  e.  _V  ->  ( W  e.  ~P J  <->  W 
C_  J ) )
4947, 48syl 16 . . . . . . 7  |-  ( ph  ->  ( W  e.  ~P J 
<->  W  C_  J )
)
5044, 49mpbiri 225 . . . . . 6  |-  ( ph  ->  W  e.  ~P J
)
51 unieq 3966 . . . . . . . . 9  |-  ( c  =  W  ->  U. c  =  U. W )
5251sseq2d 3319 . . . . . . . 8  |-  ( c  =  W  ->  (
( T  \  U
)  C_  U. c  <->  ( T  \  U ) 
C_  U. W ) )
53 pweq 3745 . . . . . . . . . 10  |-  ( c  =  W  ->  ~P c  =  ~P W
)
5453ineq1d 3484 . . . . . . . . 9  |-  ( c  =  W  ->  ( ~P c  i^i  Fin )  =  ( ~P W  i^i  Fin ) )
5554rexeqdv 2854 . . . . . . . 8  |-  ( c  =  W  ->  ( E. u  e.  ( ~P c  i^i  Fin )
( T  \  U
)  C_  U. u  <->  E. u  e.  ( ~P W  i^i  Fin )
( T  \  U
)  C_  U. u
) )
5652, 55imbi12d 312 . . . . . . 7  |-  ( c  =  W  ->  (
( ( T  \  U )  C_  U. c  ->  E. u  e.  ( ~P c  i^i  Fin ) ( T  \  U )  C_  U. u
)  <->  ( ( T 
\  U )  C_  U. W  ->  E. u  e.  ( ~P W  i^i  Fin ) ( T  \  U )  C_  U. u
) ) )
5756rspccva 2994 . . . . . 6  |-  ( ( A. c  e.  ~P  J ( ( T 
\  U )  C_  U. c  ->  E. u  e.  ( ~P c  i^i 
Fin ) ( T 
\  U )  C_  U. u )  /\  W  e.  ~P J )  -> 
( ( T  \  U )  C_  U. W  ->  E. u  e.  ( ~P W  i^i  Fin ) ( T  \  U )  C_  U. u
) )
5842, 50, 57syl2anc 643 . . . . 5  |-  ( ph  ->  ( ( T  \  U )  C_  U. W  ->  E. u  e.  ( ~P W  i^i  Fin ) ( T  \  U )  C_  U. u
) )
5958imp 419 . . . 4  |-  ( (
ph  /\  ( T  \  U )  C_  U. W
)  ->  E. u  e.  ( ~P W  i^i  Fin ) ( T  \  U )  C_  U. u
)
60 df-rex 2655 . . . 4  |-  ( E. u  e.  ( ~P W  i^i  Fin )
( T  \  U
)  C_  U. u  <->  E. u ( u  e.  ( ~P W  i^i  Fin )  /\  ( T 
\  U )  C_  U. u ) )
6159, 60sylib 189 . . 3  |-  ( (
ph  /\  ( T  \  U )  C_  U. W
)  ->  E. u
( u  e.  ( ~P W  i^i  Fin )  /\  ( T  \  U )  C_  U. u
) )
62 elin 3473 . . . . . . . 8  |-  ( u  e.  ( ~P W  i^i  Fin )  <->  ( u  e.  ~P W  /\  u  e.  Fin ) )
6362simprbi 451 . . . . . . 7  |-  ( u  e.  ( ~P W  i^i  Fin )  ->  u  e.  Fin )
6463ad2antrl 709 . . . . . 6  |-  ( ( ( ph  /\  ( T  \  U )  C_  U. W )  /\  (
u  e.  ( ~P W  i^i  Fin )  /\  ( T  \  U
)  C_  U. u
) )  ->  u  e.  Fin )
6562simplbi 447 . . . . . . . 8  |-  ( u  e.  ( ~P W  i^i  Fin )  ->  u  e.  ~P W )
6665ad2antrl 709 . . . . . . 7  |-  ( ( ( ph  /\  ( T  \  U )  C_  U. W )  /\  (
u  e.  ( ~P W  i^i  Fin )  /\  ( T  \  U
)  C_  U. u
) )  ->  u  e.  ~P W )
6766elpwid 3751 . . . . . 6  |-  ( ( ( ph  /\  ( T  \  U )  C_  U. W )  /\  (
u  e.  ( ~P W  i^i  Fin )  /\  ( T  \  U
)  C_  U. u
) )  ->  u  C_  W )
68 simprr 734 . . . . . 6  |-  ( ( ( ph  /\  ( T  \  U )  C_  U. W )  /\  (
u  e.  ( ~P W  i^i  Fin )  /\  ( T  \  U
)  C_  U. u
) )  ->  ( T  \  U )  C_  U. u )
6964, 67, 683jca 1134 . . . . 5  |-  ( ( ( ph  /\  ( T  \  U )  C_  U. W )  /\  (
u  e.  ( ~P W  i^i  Fin )  /\  ( T  \  U
)  C_  U. u
) )  ->  (
u  e.  Fin  /\  u  C_  W  /\  ( T  \  U )  C_  U. u ) )
7069ex 424 . . . 4  |-  ( (
ph  /\  ( T  \  U )  C_  U. W
)  ->  ( (
u  e.  ( ~P W  i^i  Fin )  /\  ( T  \  U
)  C_  U. u
)  ->  ( u  e.  Fin  /\  u  C_  W  /\  ( T  \  U )  C_  U. u
) ) )
7170eximdv 1629 . . 3  |-  ( (
ph  /\  ( T  \  U )  C_  U. W
)  ->  ( E. u ( u  e.  ( ~P W  i^i  Fin )  /\  ( T 
\  U )  C_  U. u )  ->  E. u
( u  e.  Fin  /\  u  C_  W  /\  ( T  \  U ) 
C_  U. u ) ) )
7261, 71mpd 15 . 2  |-  ( (
ph  /\  ( T  \  U )  C_  U. W
)  ->  E. u
( u  e.  Fin  /\  u  C_  W  /\  ( T  \  U ) 
C_  U. u ) )
7323, 72mpdan 650 1  |-  ( ph  ->  E. u ( u  e.  Fin  /\  u  C_  W  /\  ( T 
\  U )  C_  U. u ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936   E.wex 1547   F/wnf 1550    = wceq 1649    e. wcel 1717   F/_wnfc 2510    =/= wne 2550   A.wral 2649   E.wrex 2650   {crab 2653   _Vcvv 2899    \ cdif 3260    i^i cin 3262    C_ wss 3263   ~Pcpw 3742   U.cuni 3957   class class class wbr 4153    e. cmpt 4207   ran crn 4819   ` cfv 5394  (class class class)co 6020   Fincfn 7045   RRcr 8922   0cc0 8923   1c1 8924    + caddc 8926    x. cmul 8928    < clt 9053    <_ cle 9054   (,)cioo 10848   ↾t crest 13575   topGenctg 13592   Topctop 16881   Clsdccld 17003    Cn ccn 17210   Compccmp 17371
This theorem is referenced by:  stoweidlem53  27470
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-inf2 7529  ax-cnex 8979  ax-resscn 8980  ax-1cn 8981  ax-icn 8982  ax-addcl 8983  ax-addrcl 8984  ax-mulcl 8985  ax-mulrcl 8986  ax-mulcom 8987  ax-addass 8988  ax-mulass 8989  ax-distr 8990  ax-i2m1 8991  ax-1ne0 8992  ax-1rid 8993  ax-rnegex 8994  ax-rrecex 8995  ax-cnre 8996  ax-pre-lttri 8997  ax-pre-lttrn 8998  ax-pre-ltadd 8999  ax-pre-mulgt0 9000  ax-pre-sup 9001  ax-mulf 9003
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rmo 2657  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-int 3993  df-iun 4037  df-iin 4038  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-se 4483  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-isom 5403  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-of 6244  df-1st 6288  df-2nd 6289  df-riota 6485  df-recs 6569  df-rdg 6604  df-1o 6660  df-2o 6661  df-oadd 6664  df-er 6841  df-map 6956  df-ixp 7000  df-en 7046  df-dom 7047  df-sdom 7048  df-fin 7049  df-fi 7351  df-sup 7381  df-oi 7412  df-card 7759  df-cda 7981  df-pnf 9055  df-mnf 9056  df-xr 9057  df-ltxr 9058  df-le 9059  df-sub 9225  df-neg 9226  df-div 9610  df-nn 9933  df-2 9990  df-3 9991  df-4 9992  df-5 9993  df-6 9994  df-7 9995  df-8 9996  df-9 9997  df-10 9998  df-n0 10154  df-z 10215  df-dec 10315  df-uz 10421  df-q 10507  df-rp 10545  df-xneg 10642  df-xadd 10643  df-xmul 10644  df-ioo 10852  df-icc 10855  df-fz 10976  df-fzo 11066  df-seq 11251  df-exp 11310  df-hash 11546  df-cj 11831  df-re 11832  df-im 11833  df-sqr 11967  df-abs 11968  df-struct 13398  df-ndx 13399  df-slot 13400  df-base 13401  df-sets 13402  df-ress 13403  df-plusg 13469  df-mulr 13470  df-starv 13471  df-sca 13472  df-vsca 13473  df-tset 13475  df-ple 13476  df-ds 13478  df-unif 13479  df-hom 13480  df-cco 13481  df-rest 13577  df-topn 13578  df-topgen 13594  df-pt 13595  df-prds 13598  df-xrs 13653  df-0g 13654  df-gsum 13655  df-qtop 13660  df-imas 13661  df-xps 13663  df-mre 13738  df-mrc 13739  df-acs 13741  df-mnd 14617  df-submnd 14666  df-mulg 14742  df-cntz 15043  df-cmn 15341  df-xmet 16619  df-met 16620  df-bl 16621  df-mopn 16622  df-cnfld 16627  df-top 16886  df-bases 16888  df-topon 16889  df-topsp 16890  df-cld 17006  df-cn 17213  df-cnp 17214  df-cmp 17372  df-tx 17515  df-hmeo 17708  df-xms 18259  df-ms 18260  df-tms 18261
  Copyright terms: Public domain W3C validator