Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem6 Unicode version

Theorem stoweidlem6 27755
Description: Lemma for stoweid 27812: two class variables replace two set variables, for multiplication of two functions. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem6.1  |-  F/ t  f  =  F
stoweidlem6.2  |-  F/ t  g  =  G
stoweidlem6.3  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
Assertion
Ref Expression
stoweidlem6  |-  ( (
ph  /\  F  e.  A  /\  G  e.  A
)  ->  ( t  e.  T  |->  ( ( F `  t )  x.  ( G `  t ) ) )  e.  A )
Distinct variable groups:    f, g,
t    A, f, g    f, F, g    T, f, g    ph, f, g    g, G
Allowed substitution hints:    ph( t)    A( t)    T( t)    F( t)    G( t, f)

Proof of Theorem stoweidlem6
StepHypRef Expression
1 simp3 957 . . 3  |-  ( (
ph  /\  F  e.  A  /\  G  e.  A
)  ->  G  e.  A )
2 eleq1 2343 . . . . . 6  |-  ( g  =  G  ->  (
g  e.  A  <->  G  e.  A ) )
323anbi3d 1258 . . . . 5  |-  ( g  =  G  ->  (
( ph  /\  F  e.  A  /\  g  e.  A )  <->  ( ph  /\  F  e.  A  /\  G  e.  A )
) )
4 stoweidlem6.2 . . . . . . 7  |-  F/ t  g  =  G
5 fveq1 5524 . . . . . . . . 9  |-  ( g  =  G  ->  (
g `  t )  =  ( G `  t ) )
65oveq2d 5874 . . . . . . . 8  |-  ( g  =  G  ->  (
( F `  t
)  x.  ( g `
 t ) )  =  ( ( F `
 t )  x.  ( G `  t
) ) )
76adantr 451 . . . . . . 7  |-  ( ( g  =  G  /\  t  e.  T )  ->  ( ( F `  t )  x.  (
g `  t )
)  =  ( ( F `  t )  x.  ( G `  t ) ) )
84, 7mpteq2da 4105 . . . . . 6  |-  ( g  =  G  ->  (
t  e.  T  |->  ( ( F `  t
)  x.  ( g `
 t ) ) )  =  ( t  e.  T  |->  ( ( F `  t )  x.  ( G `  t ) ) ) )
98eleq1d 2349 . . . . 5  |-  ( g  =  G  ->  (
( t  e.  T  |->  ( ( F `  t )  x.  (
g `  t )
) )  e.  A  <->  ( t  e.  T  |->  ( ( F `  t
)  x.  ( G `
 t ) ) )  e.  A ) )
103, 9imbi12d 311 . . . 4  |-  ( g  =  G  ->  (
( ( ph  /\  F  e.  A  /\  g  e.  A )  ->  ( t  e.  T  |->  ( ( F `  t )  x.  (
g `  t )
) )  e.  A
)  <->  ( ( ph  /\  F  e.  A  /\  G  e.  A )  ->  ( t  e.  T  |->  ( ( F `  t )  x.  ( G `  t )
) )  e.  A
) ) )
11 simp2 956 . . . . . . 7  |-  ( (
ph  /\  F  e.  A  /\  g  e.  A
)  ->  F  e.  A )
12 eleq1 2343 . . . . . . . . . 10  |-  ( f  =  F  ->  (
f  e.  A  <->  F  e.  A ) )
13123anbi2d 1257 . . . . . . . . 9  |-  ( f  =  F  ->  (
( ph  /\  f  e.  A  /\  g  e.  A )  <->  ( ph  /\  F  e.  A  /\  g  e.  A )
) )
14 stoweidlem6.1 . . . . . . . . . . 11  |-  F/ t  f  =  F
15 fveq1 5524 . . . . . . . . . . . . 13  |-  ( f  =  F  ->  (
f `  t )  =  ( F `  t ) )
1615oveq1d 5873 . . . . . . . . . . . 12  |-  ( f  =  F  ->  (
( f `  t
)  x.  ( g `
 t ) )  =  ( ( F `
 t )  x.  ( g `  t
) ) )
1716adantr 451 . . . . . . . . . . 11  |-  ( ( f  =  F  /\  t  e.  T )  ->  ( ( f `  t )  x.  (
g `  t )
)  =  ( ( F `  t )  x.  ( g `  t ) ) )
1814, 17mpteq2da 4105 . . . . . . . . . 10  |-  ( f  =  F  ->  (
t  e.  T  |->  ( ( f `  t
)  x.  ( g `
 t ) ) )  =  ( t  e.  T  |->  ( ( F `  t )  x.  ( g `  t ) ) ) )
1918eleq1d 2349 . . . . . . . . 9  |-  ( f  =  F  ->  (
( t  e.  T  |->  ( ( f `  t )  x.  (
g `  t )
) )  e.  A  <->  ( t  e.  T  |->  ( ( F `  t
)  x.  ( g `
 t ) ) )  e.  A ) )
2013, 19imbi12d 311 . . . . . . . 8  |-  ( f  =  F  ->  (
( ( ph  /\  f  e.  A  /\  g  e.  A )  ->  ( t  e.  T  |->  ( ( f `  t )  x.  (
g `  t )
) )  e.  A
)  <->  ( ( ph  /\  F  e.  A  /\  g  e.  A )  ->  ( t  e.  T  |->  ( ( F `  t )  x.  (
g `  t )
) )  e.  A
) ) )
21 stoweidlem6.3 . . . . . . . . 9  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
2221a1i 10 . . . . . . . 8  |-  ( f  e.  A  ->  (
( ph  /\  f  e.  A  /\  g  e.  A )  ->  (
t  e.  T  |->  ( ( f `  t
)  x.  ( g `
 t ) ) )  e.  A ) )
2320, 22vtoclga 2849 . . . . . . 7  |-  ( F  e.  A  ->  (
( ph  /\  F  e.  A  /\  g  e.  A )  ->  (
t  e.  T  |->  ( ( F `  t
)  x.  ( g `
 t ) ) )  e.  A ) )
2411, 23syl 15 . . . . . 6  |-  ( (
ph  /\  F  e.  A  /\  g  e.  A
)  ->  ( ( ph  /\  F  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( F `  t )  x.  ( g `  t ) ) )  e.  A ) )
2524pm2.43i 43 . . . . 5  |-  ( (
ph  /\  F  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( F `  t )  x.  ( g `  t ) ) )  e.  A )
2625a1i 10 . . . 4  |-  ( g  e.  A  ->  (
( ph  /\  F  e.  A  /\  g  e.  A )  ->  (
t  e.  T  |->  ( ( F `  t
)  x.  ( g `
 t ) ) )  e.  A ) )
2710, 26vtoclga 2849 . . 3  |-  ( G  e.  A  ->  (
( ph  /\  F  e.  A  /\  G  e.  A )  ->  (
t  e.  T  |->  ( ( F `  t
)  x.  ( G `
 t ) ) )  e.  A ) )
281, 27syl 15 . 2  |-  ( (
ph  /\  F  e.  A  /\  G  e.  A
)  ->  ( ( ph  /\  F  e.  A  /\  G  e.  A
)  ->  ( t  e.  T  |->  ( ( F `  t )  x.  ( G `  t ) ) )  e.  A ) )
2928pm2.43i 43 1  |-  ( (
ph  /\  F  e.  A  /\  G  e.  A
)  ->  ( t  e.  T  |->  ( ( F `  t )  x.  ( G `  t ) ) )  e.  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 934   F/wnf 1531    = wceq 1623    e. wcel 1684    e. cmpt 4077   ` cfv 5255  (class class class)co 5858    x. cmul 8742
This theorem is referenced by:  stoweidlem19  27768  stoweidlem22  27771  stoweidlem32  27781  stoweidlem36  27785
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-iota 5219  df-fv 5263  df-ov 5861
  Copyright terms: Public domain W3C validator