Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stoweidlem6 Unicode version

Theorem stoweidlem6 27858
Description: Lemma for stoweid 27915: two class variables replace two set variables, for multiplication of two functions. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
stoweidlem6.1  |-  F/ t  f  =  F
stoweidlem6.2  |-  F/ t  g  =  G
stoweidlem6.3  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
Assertion
Ref Expression
stoweidlem6  |-  ( (
ph  /\  F  e.  A  /\  G  e.  A
)  ->  ( t  e.  T  |->  ( ( F `  t )  x.  ( G `  t ) ) )  e.  A )
Distinct variable groups:    f, g,
t    A, f, g    f, F, g    T, f, g    ph, f, g    g, G
Allowed substitution hints:    ph( t)    A( t)    T( t)    F( t)    G( t, f)

Proof of Theorem stoweidlem6
StepHypRef Expression
1 simp3 957 . . 3  |-  ( (
ph  /\  F  e.  A  /\  G  e.  A
)  ->  G  e.  A )
2 eleq1 2356 . . . . . 6  |-  ( g  =  G  ->  (
g  e.  A  <->  G  e.  A ) )
323anbi3d 1258 . . . . 5  |-  ( g  =  G  ->  (
( ph  /\  F  e.  A  /\  g  e.  A )  <->  ( ph  /\  F  e.  A  /\  G  e.  A )
) )
4 stoweidlem6.2 . . . . . . 7  |-  F/ t  g  =  G
5 fveq1 5540 . . . . . . . . 9  |-  ( g  =  G  ->  (
g `  t )  =  ( G `  t ) )
65oveq2d 5890 . . . . . . . 8  |-  ( g  =  G  ->  (
( F `  t
)  x.  ( g `
 t ) )  =  ( ( F `
 t )  x.  ( G `  t
) ) )
76adantr 451 . . . . . . 7  |-  ( ( g  =  G  /\  t  e.  T )  ->  ( ( F `  t )  x.  (
g `  t )
)  =  ( ( F `  t )  x.  ( G `  t ) ) )
84, 7mpteq2da 4121 . . . . . 6  |-  ( g  =  G  ->  (
t  e.  T  |->  ( ( F `  t
)  x.  ( g `
 t ) ) )  =  ( t  e.  T  |->  ( ( F `  t )  x.  ( G `  t ) ) ) )
98eleq1d 2362 . . . . 5  |-  ( g  =  G  ->  (
( t  e.  T  |->  ( ( F `  t )  x.  (
g `  t )
) )  e.  A  <->  ( t  e.  T  |->  ( ( F `  t
)  x.  ( G `
 t ) ) )  e.  A ) )
103, 9imbi12d 311 . . . 4  |-  ( g  =  G  ->  (
( ( ph  /\  F  e.  A  /\  g  e.  A )  ->  ( t  e.  T  |->  ( ( F `  t )  x.  (
g `  t )
) )  e.  A
)  <->  ( ( ph  /\  F  e.  A  /\  G  e.  A )  ->  ( t  e.  T  |->  ( ( F `  t )  x.  ( G `  t )
) )  e.  A
) ) )
11 simp2 956 . . . . . . 7  |-  ( (
ph  /\  F  e.  A  /\  g  e.  A
)  ->  F  e.  A )
12 eleq1 2356 . . . . . . . . . 10  |-  ( f  =  F  ->  (
f  e.  A  <->  F  e.  A ) )
13123anbi2d 1257 . . . . . . . . 9  |-  ( f  =  F  ->  (
( ph  /\  f  e.  A  /\  g  e.  A )  <->  ( ph  /\  F  e.  A  /\  g  e.  A )
) )
14 stoweidlem6.1 . . . . . . . . . . 11  |-  F/ t  f  =  F
15 fveq1 5540 . . . . . . . . . . . . 13  |-  ( f  =  F  ->  (
f `  t )  =  ( F `  t ) )
1615oveq1d 5889 . . . . . . . . . . . 12  |-  ( f  =  F  ->  (
( f `  t
)  x.  ( g `
 t ) )  =  ( ( F `
 t )  x.  ( g `  t
) ) )
1716adantr 451 . . . . . . . . . . 11  |-  ( ( f  =  F  /\  t  e.  T )  ->  ( ( f `  t )  x.  (
g `  t )
)  =  ( ( F `  t )  x.  ( g `  t ) ) )
1814, 17mpteq2da 4121 . . . . . . . . . 10  |-  ( f  =  F  ->  (
t  e.  T  |->  ( ( f `  t
)  x.  ( g `
 t ) ) )  =  ( t  e.  T  |->  ( ( F `  t )  x.  ( g `  t ) ) ) )
1918eleq1d 2362 . . . . . . . . 9  |-  ( f  =  F  ->  (
( t  e.  T  |->  ( ( f `  t )  x.  (
g `  t )
) )  e.  A  <->  ( t  e.  T  |->  ( ( F `  t
)  x.  ( g `
 t ) ) )  e.  A ) )
2013, 19imbi12d 311 . . . . . . . 8  |-  ( f  =  F  ->  (
( ( ph  /\  f  e.  A  /\  g  e.  A )  ->  ( t  e.  T  |->  ( ( f `  t )  x.  (
g `  t )
) )  e.  A
)  <->  ( ( ph  /\  F  e.  A  /\  g  e.  A )  ->  ( t  e.  T  |->  ( ( F `  t )  x.  (
g `  t )
) )  e.  A
) ) )
21 stoweidlem6.3 . . . . . . . . 9  |-  ( (
ph  /\  f  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( f `  t )  x.  ( g `  t ) ) )  e.  A )
2221a1i 10 . . . . . . . 8  |-  ( f  e.  A  ->  (
( ph  /\  f  e.  A  /\  g  e.  A )  ->  (
t  e.  T  |->  ( ( f `  t
)  x.  ( g `
 t ) ) )  e.  A ) )
2320, 22vtoclga 2862 . . . . . . 7  |-  ( F  e.  A  ->  (
( ph  /\  F  e.  A  /\  g  e.  A )  ->  (
t  e.  T  |->  ( ( F `  t
)  x.  ( g `
 t ) ) )  e.  A ) )
2411, 23syl 15 . . . . . 6  |-  ( (
ph  /\  F  e.  A  /\  g  e.  A
)  ->  ( ( ph  /\  F  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( F `  t )  x.  ( g `  t ) ) )  e.  A ) )
2524pm2.43i 43 . . . . 5  |-  ( (
ph  /\  F  e.  A  /\  g  e.  A
)  ->  ( t  e.  T  |->  ( ( F `  t )  x.  ( g `  t ) ) )  e.  A )
2625a1i 10 . . . 4  |-  ( g  e.  A  ->  (
( ph  /\  F  e.  A  /\  g  e.  A )  ->  (
t  e.  T  |->  ( ( F `  t
)  x.  ( g `
 t ) ) )  e.  A ) )
2710, 26vtoclga 2862 . . 3  |-  ( G  e.  A  ->  (
( ph  /\  F  e.  A  /\  G  e.  A )  ->  (
t  e.  T  |->  ( ( F `  t
)  x.  ( G `
 t ) ) )  e.  A ) )
281, 27syl 15 . 2  |-  ( (
ph  /\  F  e.  A  /\  G  e.  A
)  ->  ( ( ph  /\  F  e.  A  /\  G  e.  A
)  ->  ( t  e.  T  |->  ( ( F `  t )  x.  ( G `  t ) ) )  e.  A ) )
2928pm2.43i 43 1  |-  ( (
ph  /\  F  e.  A  /\  G  e.  A
)  ->  ( t  e.  T  |->  ( ( F `  t )  x.  ( G `  t ) ) )  e.  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 934   F/wnf 1534    = wceq 1632    e. wcel 1696    e. cmpt 4093   ` cfv 5271  (class class class)co 5874    x. cmul 8758
This theorem is referenced by:  stoweidlem19  27871  stoweidlem22  27874  stoweidlem32  27884  stoweidlem36  27888
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-iota 5235  df-fv 5279  df-ov 5877
  Copyright terms: Public domain W3C validator