Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  strfv2 Structured version   Unicode version

Theorem strfv2 13502
 Description: A variation on strfv 13503 to avoid asserting that itself is a function, which involves sethood of all the ordered pair components of . (Contributed by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
strfv2.s
strfv2.f
strfv2.e Slot
strfv2.n
Assertion
Ref Expression
strfv2

Proof of Theorem strfv2
StepHypRef Expression
1 strfv2.e . 2 Slot
2 strfv2.s . . 3
32a1i 11 . 2
4 strfv2.f . . 3
54a1i 11 . 2
6 strfv2.n . . 3
76a1i 11 . 2
8 id 21 . 2
91, 3, 5, 7, 8strfv2d 13501 1
 Colors of variables: wff set class Syntax hints:   wi 4   wceq 1653   wcel 1726  cvv 2958  cop 3819  ccnv 4879   wfun 5450  cfv 5456  cnx 13468  Slot cslot 13470 This theorem is referenced by:  strfv  13503 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4332  ax-nul 4340  ax-pr 4405 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-br 4215  df-opab 4269  df-mpt 4270  df-id 4500  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-res 4892  df-iota 5420  df-fun 5458  df-fv 5464  df-slot 13475
 Copyright terms: Public domain W3C validator