MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  strfv2 Unicode version

Theorem strfv2 13179
Description: A variation on strfv 13180 to avoid asserting that  S itself is a function, which involves sethood of all the ordered pair components of  S. (Contributed by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
strfv2.s  |-  S  e. 
_V
strfv2.f  |-  Fun  `' `' S
strfv2.e  |-  E  = Slot  ( E `  ndx )
strfv2.n  |-  <. ( E `  ndx ) ,  C >.  e.  S
Assertion
Ref Expression
strfv2  |-  ( C  e.  V  ->  C  =  ( E `  S ) )

Proof of Theorem strfv2
StepHypRef Expression
1 strfv2.e . 2  |-  E  = Slot  ( E `  ndx )
2 strfv2.s . . 3  |-  S  e. 
_V
32a1i 10 . 2  |-  ( C  e.  V  ->  S  e.  _V )
4 strfv2.f . . 3  |-  Fun  `' `' S
54a1i 10 . 2  |-  ( C  e.  V  ->  Fun  `' `' S )
6 strfv2.n . . 3  |-  <. ( E `  ndx ) ,  C >.  e.  S
76a1i 10 . 2  |-  ( C  e.  V  ->  <. ( E `  ndx ) ,  C >.  e.  S
)
8 id 19 . 2  |-  ( C  e.  V  ->  C  e.  V )
91, 3, 5, 7, 8strfv2d 13178 1  |-  ( C  e.  V  ->  C  =  ( E `  S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1623    e. wcel 1684   _Vcvv 2788   <.cop 3643   `'ccnv 4688   Fun wfun 5249   ` cfv 5255   ndxcnx 13145  Slot cslot 13147
This theorem is referenced by:  strfv  13180
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-res 4701  df-iota 5219  df-fun 5257  df-fv 5263  df-slot 13152
  Copyright terms: Public domain W3C validator