MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  strfvd Unicode version

Theorem strfvd 13274
Description: Deduction version of strfv 13277. (Contributed by Mario Carneiro, 15-Nov-2014.)
Hypotheses
Ref Expression
strfvd.e  |-  E  = Slot  ( E `  ndx )
strfvd.s  |-  ( ph  ->  S  e.  V )
strfvd.f  |-  ( ph  ->  Fun  S )
strfvd.n  |-  ( ph  -> 
<. ( E `  ndx ) ,  C >.  e.  S )
Assertion
Ref Expression
strfvd  |-  ( ph  ->  C  =  ( E `
 S ) )

Proof of Theorem strfvd
StepHypRef Expression
1 strfvd.e . . 3  |-  E  = Slot  ( E `  ndx )
2 strfvd.s . . 3  |-  ( ph  ->  S  e.  V )
31, 2strfvnd 13260 . 2  |-  ( ph  ->  ( E `  S
)  =  ( S `
 ( E `  ndx ) ) )
4 strfvd.f . . 3  |-  ( ph  ->  Fun  S )
5 strfvd.n . . 3  |-  ( ph  -> 
<. ( E `  ndx ) ,  C >.  e.  S )
6 funopfv 5645 . . 3  |-  ( Fun 
S  ->  ( <. ( E `  ndx ) ,  C >.  e.  S  ->  ( S `  ( E `  ndx ) )  =  C ) )
74, 5, 6sylc 56 . 2  |-  ( ph  ->  ( S `  ( E `  ndx ) )  =  C )
83, 7eqtr2d 2391 1  |-  ( ph  ->  C  =  ( E `
 S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1642    e. wcel 1710   <.cop 3719   Fun wfun 5331   ` cfv 5337   ndxcnx 13242  Slot cslot 13244
This theorem is referenced by:  strssd  13279
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-sep 4222  ax-nul 4230  ax-pr 4295
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-ral 2624  df-rex 2625  df-rab 2628  df-v 2866  df-sbc 3068  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-sn 3722  df-pr 3723  df-op 3725  df-uni 3909  df-br 4105  df-opab 4159  df-mpt 4160  df-id 4391  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-iota 5301  df-fun 5339  df-fv 5345  df-slot 13249
  Copyright terms: Public domain W3C validator