MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  strfvnd Structured version   Unicode version

Theorem strfvnd 13489
Description: Deduction version of strfvn 13491. (Contributed by Mario Carneiro, 15-Nov-2014.)
Hypotheses
Ref Expression
strfvnd.c  |-  E  = Slot 
N
strfvnd.f  |-  ( ph  ->  S  e.  V )
Assertion
Ref Expression
strfvnd  |-  ( ph  ->  ( E `  S
)  =  ( S `
 N ) )

Proof of Theorem strfvnd
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 strfvnd.f . 2  |-  ( ph  ->  S  e.  V )
2 elex 2966 . 2  |-  ( S  e.  V  ->  S  e.  _V )
3 fveq1 5730 . . 3  |-  ( x  =  S  ->  (
x `  N )  =  ( S `  N ) )
4 strfvnd.c . . . 4  |-  E  = Slot 
N
5 df-slot 13478 . . . 4  |- Slot  N  =  ( x  e.  _V  |->  ( x `  N
) )
64, 5eqtri 2458 . . 3  |-  E  =  ( x  e.  _V  |->  ( x `  N
) )
7 fvex 5745 . . 3  |-  ( S `
 N )  e. 
_V
83, 6, 7fvmpt 5809 . 2  |-  ( S  e.  _V  ->  ( E `  S )  =  ( S `  N ) )
91, 2, 83syl 19 1  |-  ( ph  ->  ( E `  S
)  =  ( S `
 N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1653    e. wcel 1726   _Vcvv 2958    e. cmpt 4269   ` cfv 5457  Slot cslot 13473
This theorem is referenced by:  strfvn  13491  strfvss  13492  strfvd  13503  strfv2d  13504  setsid  13513  setsnid  13514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pr 4406
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-br 4216  df-opab 4270  df-mpt 4271  df-id 4501  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-iota 5421  df-fun 5459  df-fv 5465  df-slot 13478
  Copyright terms: Public domain W3C validator