MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  strle2 Unicode version

Theorem strle2 13524
Description: Make a structure from a pair. (Contributed by Mario Carneiro, 29-Aug-2015.)
Hypotheses
Ref Expression
strle1.i  |-  I  e.  NN
strle1.a  |-  A  =  I
strle2.j  |-  I  < 
J
strle2.k  |-  J  e.  NN
strle2.b  |-  B  =  J
Assertion
Ref Expression
strle2  |-  { <. A ,  X >. ,  <. B ,  Y >. } Struct  <. I ,  J >.

Proof of Theorem strle2
StepHypRef Expression
1 df-pr 3789 . 2  |-  { <. A ,  X >. ,  <. B ,  Y >. }  =  ( { <. A ,  X >. }  u.  { <. B ,  Y >. } )
2 strle1.i . . . 4  |-  I  e.  NN
3 strle1.a . . . 4  |-  A  =  I
42, 3strle1 13523 . . 3  |-  { <. A ,  X >. } Struct  <. I ,  I >.
5 strle2.k . . . 4  |-  J  e.  NN
6 strle2.b . . . 4  |-  B  =  J
75, 6strle1 13523 . . 3  |-  { <. B ,  Y >. } Struct  <. J ,  J >.
8 strle2.j . . 3  |-  I  < 
J
94, 7, 8strleun 13522 . 2  |-  ( {
<. A ,  X >. }  u.  { <. B ,  Y >. } ) Struct  <. I ,  J >.
101, 9eqbrtri 4199 1  |-  { <. A ,  X >. ,  <. B ,  Y >. } Struct  <. I ,  J >.
Colors of variables: wff set class
Syntax hints:    = wceq 1649    e. wcel 1721    u. cun 3286   {csn 3782   {cpr 3783   <.cop 3785   class class class wbr 4180    < clt 9084   NNcn 9964   Struct cstr 13428
This theorem is referenced by:  strle3  13525  2strstr  13528  algstr  13561  prdsvalstr  13639  ipostr  14542
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668  ax-cnex 9010  ax-resscn 9011  ax-1cn 9012  ax-icn 9013  ax-addcl 9014  ax-addrcl 9015  ax-mulcl 9016  ax-mulrcl 9017  ax-mulcom 9018  ax-addass 9019  ax-mulass 9020  ax-distr 9021  ax-i2m1 9022  ax-1ne0 9023  ax-1rid 9024  ax-rnegex 9025  ax-rrecex 9026  ax-cnre 9027  ax-pre-lttri 9028  ax-pre-lttrn 9029  ax-pre-ltadd 9030  ax-pre-mulgt0 9031
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-nel 2578  df-ral 2679  df-rex 2680  df-reu 2681  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-pss 3304  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-tp 3790  df-op 3791  df-uni 3984  df-int 4019  df-iun 4063  df-br 4181  df-opab 4235  df-mpt 4236  df-tr 4271  df-eprel 4462  df-id 4466  df-po 4471  df-so 4472  df-fr 4509  df-we 4511  df-ord 4552  df-on 4553  df-lim 4554  df-suc 4555  df-om 4813  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-ov 6051  df-oprab 6052  df-mpt2 6053  df-1st 6316  df-2nd 6317  df-riota 6516  df-recs 6600  df-rdg 6635  df-1o 6691  df-oadd 6695  df-er 6872  df-en 7077  df-dom 7078  df-sdom 7079  df-fin 7080  df-pnf 9086  df-mnf 9087  df-xr 9088  df-ltxr 9089  df-le 9090  df-sub 9257  df-neg 9258  df-nn 9965  df-n0 10186  df-z 10247  df-uz 10453  df-fz 11008  df-struct 13434
  Copyright terms: Public domain W3C validator