MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  strss Unicode version

Theorem strss 13183
Description: Propagate component extraction to a structure  T from a subset structure  S. (Contributed by Mario Carneiro, 11-Oct-2013.) (Revised by Mario Carneiro, 15-Jan-2014.)
Hypotheses
Ref Expression
strss.t  |-  T  e. 
_V
strss.f  |-  Fun  T
strss.s  |-  S  C_  T
strss.e  |-  E  = Slot  ( E `  ndx )
strss.n  |-  <. ( E `  ndx ) ,  C >.  e.  S
Assertion
Ref Expression
strss  |-  ( E `
 T )  =  ( E `  S
)

Proof of Theorem strss
StepHypRef Expression
1 strss.e . . 3  |-  E  = Slot  ( E `  ndx )
2 strss.t . . . 4  |-  T  e. 
_V
32a1i 10 . . 3  |-  (  T. 
->  T  e.  _V )
4 strss.f . . . 4  |-  Fun  T
54a1i 10 . . 3  |-  (  T. 
->  Fun  T )
6 strss.s . . . 4  |-  S  C_  T
76a1i 10 . . 3  |-  (  T. 
->  S  C_  T )
8 strss.n . . . 4  |-  <. ( E `  ndx ) ,  C >.  e.  S
98a1i 10 . . 3  |-  (  T. 
->  <. ( E `  ndx ) ,  C >.  e.  S )
101, 3, 5, 7, 9strssd 13182 . 2  |-  (  T. 
->  ( E `  T
)  =  ( E `
 S ) )
1110trud 1314 1  |-  ( E `
 T )  =  ( E `  S
)
Colors of variables: wff set class
Syntax hints:    T. wtru 1307    = wceq 1623    e. wcel 1684   _Vcvv 2788    C_ wss 3152   <.cop 3643   Fun wfun 5249   ` cfv 5255   ndxcnx 13145  Slot cslot 13147
This theorem is referenced by:  grpss  14503
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-iota 5219  df-fun 5257  df-fv 5263  df-slot 13152
  Copyright terms: Public domain W3C validator