MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subbascn Unicode version

Theorem subbascn 17000
Description: The contininuity predicate when the range is given by a subbasis for a topology. (Contributed by Mario Carneiro, 7-Feb-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
subbascn.1  |-  ( ph  ->  J  e.  (TopOn `  X ) )
subbascn.2  |-  ( ph  ->  B  e.  V )
subbascn.3  |-  ( ph  ->  K  =  ( topGen `  ( fi `  B
) ) )
subbascn.4  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
Assertion
Ref Expression
subbascn  |-  ( ph  ->  ( F  e.  ( J  Cn  K )  <-> 
( F : X --> Y  /\  A. y  e.  B  ( `' F " y )  e.  J
) ) )
Distinct variable groups:    y, B    y, F    y, J    y, X    y, Y    y, K
Allowed substitution hints:    ph( y)    V( y)

Proof of Theorem subbascn
Dummy variables  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subbascn.1 . . 3  |-  ( ph  ->  J  e.  (TopOn `  X ) )
2 subbascn.3 . . 3  |-  ( ph  ->  K  =  ( topGen `  ( fi `  B
) ) )
3 subbascn.4 . . 3  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
41, 2, 3tgcn 16998 . 2  |-  ( ph  ->  ( F  e.  ( J  Cn  K )  <-> 
( F : X --> Y  /\  A. y  e.  ( fi `  B
) ( `' F " y )  e.  J
) ) )
5 subbascn.2 . . . . . 6  |-  ( ph  ->  B  e.  V )
65adantr 451 . . . . 5  |-  ( (
ph  /\  F : X
--> Y )  ->  B  e.  V )
7 ssfii 7188 . . . . 5  |-  ( B  e.  V  ->  B  C_  ( fi `  B
) )
8 ssralv 3250 . . . . 5  |-  ( B 
C_  ( fi `  B )  ->  ( A. y  e.  ( fi `  B ) ( `' F " y )  e.  J  ->  A. y  e.  B  ( `' F " y )  e.  J ) )
96, 7, 83syl 18 . . . 4  |-  ( (
ph  /\  F : X
--> Y )  ->  ( A. y  e.  ( fi `  B ) ( `' F " y )  e.  J  ->  A. y  e.  B  ( `' F " y )  e.  J ) )
10 vex 2804 . . . . . . . . 9  |-  x  e. 
_V
11 elfi 7183 . . . . . . . . 9  |-  ( ( x  e.  _V  /\  B  e.  V )  ->  ( x  e.  ( fi `  B )  <->  E. z  e.  ( ~P B  i^i  Fin )
x  =  |^| z
) )
1210, 6, 11sylancr 644 . . . . . . . 8  |-  ( (
ph  /\  F : X
--> Y )  ->  (
x  e.  ( fi
`  B )  <->  E. z  e.  ( ~P B  i^i  Fin ) x  =  |^| z ) )
13 simpr2 962 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  F : X --> Y )  /\  ( z  e.  ( ~P B  i^i  Fin )  /\  x  =  |^| z  /\  A. y  e.  B  ( `' F " y )  e.  J
) )  ->  x  =  |^| z )
1413imaeq2d 5028 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  F : X --> Y )  /\  ( z  e.  ( ~P B  i^i  Fin )  /\  x  =  |^| z  /\  A. y  e.  B  ( `' F " y )  e.  J
) )  ->  ( `' F " x )  =  ( `' F "
|^| z ) )
15 ffun 5407 . . . . . . . . . . . . . 14  |-  ( F : X --> Y  ->  Fun  F )
1615ad2antlr 707 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  F : X --> Y )  /\  ( z  e.  ( ~P B  i^i  Fin )  /\  x  =  |^| z  /\  A. y  e.  B  ( `' F " y )  e.  J
) )  ->  Fun  F )
1713, 10syl6eqelr 2385 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  F : X --> Y )  /\  ( z  e.  ( ~P B  i^i  Fin )  /\  x  =  |^| z  /\  A. y  e.  B  ( `' F " y )  e.  J
) )  ->  |^| z  e.  _V )
18 intex 4183 . . . . . . . . . . . . . 14  |-  ( z  =/=  (/)  <->  |^| z  e.  _V )
1917, 18sylibr 203 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  F : X --> Y )  /\  ( z  e.  ( ~P B  i^i  Fin )  /\  x  =  |^| z  /\  A. y  e.  B  ( `' F " y )  e.  J
) )  ->  z  =/=  (/) )
20 intpreima 5672 . . . . . . . . . . . . 13  |-  ( ( Fun  F  /\  z  =/=  (/) )  ->  ( `' F " |^| z
)  =  |^|_ y  e.  z  ( `' F " y ) )
2116, 19, 20syl2anc 642 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  F : X --> Y )  /\  ( z  e.  ( ~P B  i^i  Fin )  /\  x  =  |^| z  /\  A. y  e.  B  ( `' F " y )  e.  J
) )  ->  ( `' F " |^| z
)  =  |^|_ y  e.  z  ( `' F " y ) )
2214, 21eqtrd 2328 . . . . . . . . . . 11  |-  ( ( ( ph  /\  F : X --> Y )  /\  ( z  e.  ( ~P B  i^i  Fin )  /\  x  =  |^| z  /\  A. y  e.  B  ( `' F " y )  e.  J
) )  ->  ( `' F " x )  =  |^|_ y  e.  z  ( `' F "
y ) )
23 topontop 16680 . . . . . . . . . . . . . 14  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
241, 23syl 15 . . . . . . . . . . . . 13  |-  ( ph  ->  J  e.  Top )
2524ad2antrr 706 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  F : X --> Y )  /\  ( z  e.  ( ~P B  i^i  Fin )  /\  x  =  |^| z  /\  A. y  e.  B  ( `' F " y )  e.  J
) )  ->  J  e.  Top )
26 inss2 3403 . . . . . . . . . . . . 13  |-  ( ~P B  i^i  Fin )  C_ 
Fin
27 simpr1 961 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  F : X --> Y )  /\  ( z  e.  ( ~P B  i^i  Fin )  /\  x  =  |^| z  /\  A. y  e.  B  ( `' F " y )  e.  J
) )  ->  z  e.  ( ~P B  i^i  Fin ) )
2826, 27sseldi 3191 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  F : X --> Y )  /\  ( z  e.  ( ~P B  i^i  Fin )  /\  x  =  |^| z  /\  A. y  e.  B  ( `' F " y )  e.  J
) )  ->  z  e.  Fin )
29 inss1 3402 . . . . . . . . . . . . . . 15  |-  ( ~P B  i^i  Fin )  C_ 
~P B
3029, 27sseldi 3191 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  F : X --> Y )  /\  ( z  e.  ( ~P B  i^i  Fin )  /\  x  =  |^| z  /\  A. y  e.  B  ( `' F " y )  e.  J
) )  ->  z  e.  ~P B )
31 elpwi 3646 . . . . . . . . . . . . . 14  |-  ( z  e.  ~P B  -> 
z  C_  B )
3230, 31syl 15 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  F : X --> Y )  /\  ( z  e.  ( ~P B  i^i  Fin )  /\  x  =  |^| z  /\  A. y  e.  B  ( `' F " y )  e.  J
) )  ->  z  C_  B )
33 simpr3 963 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  F : X --> Y )  /\  ( z  e.  ( ~P B  i^i  Fin )  /\  x  =  |^| z  /\  A. y  e.  B  ( `' F " y )  e.  J
) )  ->  A. y  e.  B  ( `' F " y )  e.  J )
34 ssralv 3250 . . . . . . . . . . . . 13  |-  ( z 
C_  B  ->  ( A. y  e.  B  ( `' F " y )  e.  J  ->  A. y  e.  z  ( `' F " y )  e.  J ) )
3532, 33, 34sylc 56 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  F : X --> Y )  /\  ( z  e.  ( ~P B  i^i  Fin )  /\  x  =  |^| z  /\  A. y  e.  B  ( `' F " y )  e.  J
) )  ->  A. y  e.  z  ( `' F " y )  e.  J )
36 iinopn 16664 . . . . . . . . . . . 12  |-  ( ( J  e.  Top  /\  ( z  e.  Fin  /\  z  =/=  (/)  /\  A. y  e.  z  ( `' F " y )  e.  J ) )  ->  |^|_ y  e.  z  ( `' F "
y )  e.  J
)
3725, 28, 19, 35, 36syl13anc 1184 . . . . . . . . . . 11  |-  ( ( ( ph  /\  F : X --> Y )  /\  ( z  e.  ( ~P B  i^i  Fin )  /\  x  =  |^| z  /\  A. y  e.  B  ( `' F " y )  e.  J
) )  ->  |^|_ y  e.  z  ( `' F " y )  e.  J )
3822, 37eqeltrd 2370 . . . . . . . . . 10  |-  ( ( ( ph  /\  F : X --> Y )  /\  ( z  e.  ( ~P B  i^i  Fin )  /\  x  =  |^| z  /\  A. y  e.  B  ( `' F " y )  e.  J
) )  ->  ( `' F " x )  e.  J )
39383exp2 1169 . . . . . . . . 9  |-  ( (
ph  /\  F : X
--> Y )  ->  (
z  e.  ( ~P B  i^i  Fin )  ->  ( x  =  |^| z  ->  ( A. y  e.  B  ( `' F " y )  e.  J  ->  ( `' F " x )  e.  J ) ) ) )
4039rexlimdv 2679 . . . . . . . 8  |-  ( (
ph  /\  F : X
--> Y )  ->  ( E. z  e.  ( ~P B  i^i  Fin )
x  =  |^| z  ->  ( A. y  e.  B  ( `' F " y )  e.  J  ->  ( `' F "
x )  e.  J
) ) )
4112, 40sylbid 206 . . . . . . 7  |-  ( (
ph  /\  F : X
--> Y )  ->  (
x  e.  ( fi
`  B )  -> 
( A. y  e.  B  ( `' F " y )  e.  J  ->  ( `' F "
x )  e.  J
) ) )
4241com23 72 . . . . . 6  |-  ( (
ph  /\  F : X
--> Y )  ->  ( A. y  e.  B  ( `' F " y )  e.  J  ->  (
x  e.  ( fi
`  B )  -> 
( `' F "
x )  e.  J
) ) )
4342ralrimdv 2645 . . . . 5  |-  ( (
ph  /\  F : X
--> Y )  ->  ( A. y  e.  B  ( `' F " y )  e.  J  ->  A. x  e.  ( fi `  B
) ( `' F " x )  e.  J
) )
44 imaeq2 5024 . . . . . . 7  |-  ( y  =  x  ->  ( `' F " y )  =  ( `' F " x ) )
4544eleq1d 2362 . . . . . 6  |-  ( y  =  x  ->  (
( `' F "
y )  e.  J  <->  ( `' F " x )  e.  J ) )
4645cbvralv 2777 . . . . 5  |-  ( A. y  e.  ( fi `  B ) ( `' F " y )  e.  J  <->  A. x  e.  ( fi `  B
) ( `' F " x )  e.  J
)
4743, 46syl6ibr 218 . . . 4  |-  ( (
ph  /\  F : X
--> Y )  ->  ( A. y  e.  B  ( `' F " y )  e.  J  ->  A. y  e.  ( fi `  B
) ( `' F " y )  e.  J
) )
489, 47impbid 183 . . 3  |-  ( (
ph  /\  F : X
--> Y )  ->  ( A. y  e.  ( fi `  B ) ( `' F " y )  e.  J  <->  A. y  e.  B  ( `' F " y )  e.  J ) )
4948pm5.32da 622 . 2  |-  ( ph  ->  ( ( F : X
--> Y  /\  A. y  e.  ( fi `  B
) ( `' F " y )  e.  J
)  <->  ( F : X
--> Y  /\  A. y  e.  B  ( `' F " y )  e.  J ) ) )
504, 49bitrd 244 1  |-  ( ph  ->  ( F  e.  ( J  Cn  K )  <-> 
( F : X --> Y  /\  A. y  e.  B  ( `' F " y )  e.  J
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    =/= wne 2459   A.wral 2556   E.wrex 2557   _Vcvv 2801    i^i cin 3164    C_ wss 3165   (/)c0 3468   ~Pcpw 3638   |^|cint 3878   |^|_ciin 3922   `'ccnv 4704   "cima 4708   Fun wfun 5265   -->wf 5267   ` cfv 5271  (class class class)co 5874   Fincfn 6879   ficfi 7180   topGenctg 13358   Topctop 16647  TopOnctopon 16648    Cn ccn 16970
This theorem is referenced by:  xkoccn  17329  ptrescn  17349  xkoco1cn  17367  xkoco2cn  17368  xkococn  17370  xkoinjcn  17397  ordthmeolem  17508
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-er 6676  df-map 6790  df-en 6880  df-dom 6881  df-fin 6883  df-fi 7181  df-topgen 13360  df-top 16652  df-bases 16654  df-topon 16655  df-cn 16973
  Copyright terms: Public domain W3C validator