MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subcn2 Unicode version

Theorem subcn2 12084
Description: Complex number subtraction is a continuous function. Part of Proposition 14-4.16 of [Gleason] p. 243. (Contributed by Mario Carneiro, 31-Jan-2014.)
Assertion
Ref Expression
subcn2  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  E. y  e.  RR+  E. z  e.  RR+  A. u  e.  CC  A. v  e.  CC  (
( ( abs `  (
u  -  B ) )  <  y  /\  ( abs `  ( v  -  C ) )  <  z )  -> 
( abs `  (
( u  -  v
)  -  ( B  -  C ) ) )  <  A ) )
Distinct variable groups:    v, u, y, z, A    u, B, v, y, z    u, C, v, y, z

Proof of Theorem subcn2
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 negcl 9068 . . 3  |-  ( C  e.  CC  ->  -u C  e.  CC )
2 addcn2 12083 . . 3  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  -u C  e.  CC )  ->  E. y  e.  RR+  E. z  e.  RR+  A. u  e.  CC  A. w  e.  CC  (
( ( abs `  (
u  -  B ) )  <  y  /\  ( abs `  ( w  -  -u C ) )  <  z )  -> 
( abs `  (
( u  +  w
)  -  ( B  +  -u C ) ) )  <  A ) )
31, 2syl3an3 1217 . 2  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  E. y  e.  RR+  E. z  e.  RR+  A. u  e.  CC  A. w  e.  CC  (
( ( abs `  (
u  -  B ) )  <  y  /\  ( abs `  ( w  -  -u C ) )  <  z )  -> 
( abs `  (
( u  +  w
)  -  ( B  +  -u C ) ) )  <  A ) )
4 negcl 9068 . . . . . . . . 9  |-  ( v  e.  CC  ->  -u v  e.  CC )
5 oveq1 5881 . . . . . . . . . . . . . 14  |-  ( w  =  -u v  ->  (
w  -  -u C
)  =  ( -u v  -  -u C ) )
65fveq2d 5545 . . . . . . . . . . . . 13  |-  ( w  =  -u v  ->  ( abs `  ( w  -  -u C ) )  =  ( abs `  ( -u v  -  -u C
) ) )
76breq1d 4049 . . . . . . . . . . . 12  |-  ( w  =  -u v  ->  (
( abs `  (
w  -  -u C
) )  <  z  <->  ( abs `  ( -u v  -  -u C ) )  <  z ) )
87anbi2d 684 . . . . . . . . . . 11  |-  ( w  =  -u v  ->  (
( ( abs `  (
u  -  B ) )  <  y  /\  ( abs `  ( w  -  -u C ) )  <  z )  <->  ( ( abs `  ( u  -  B ) )  < 
y  /\  ( abs `  ( -u v  -  -u C ) )  < 
z ) ) )
9 oveq2 5882 . . . . . . . . . . . . . 14  |-  ( w  =  -u v  ->  (
u  +  w )  =  ( u  +  -u v ) )
109oveq1d 5889 . . . . . . . . . . . . 13  |-  ( w  =  -u v  ->  (
( u  +  w
)  -  ( B  +  -u C ) )  =  ( ( u  +  -u v )  -  ( B  +  -u C
) ) )
1110fveq2d 5545 . . . . . . . . . . . 12  |-  ( w  =  -u v  ->  ( abs `  ( ( u  +  w )  -  ( B  +  -u C
) ) )  =  ( abs `  (
( u  +  -u v )  -  ( B  +  -u C ) ) ) )
1211breq1d 4049 . . . . . . . . . . 11  |-  ( w  =  -u v  ->  (
( abs `  (
( u  +  w
)  -  ( B  +  -u C ) ) )  <  A  <->  ( abs `  ( ( u  +  -u v )  -  ( B  +  -u C ) ) )  <  A
) )
138, 12imbi12d 311 . . . . . . . . . 10  |-  ( w  =  -u v  ->  (
( ( ( abs `  ( u  -  B
) )  <  y  /\  ( abs `  (
w  -  -u C
) )  <  z
)  ->  ( abs `  ( ( u  +  w )  -  ( B  +  -u C ) ) )  <  A
)  <->  ( ( ( abs `  ( u  -  B ) )  <  y  /\  ( abs `  ( -u v  -  -u C ) )  <  z )  -> 
( abs `  (
( u  +  -u v )  -  ( B  +  -u C ) ) )  <  A
) ) )
1413rspcv 2893 . . . . . . . . 9  |-  ( -u v  e.  CC  ->  ( A. w  e.  CC  ( ( ( abs `  ( u  -  B
) )  <  y  /\  ( abs `  (
w  -  -u C
) )  <  z
)  ->  ( abs `  ( ( u  +  w )  -  ( B  +  -u C ) ) )  <  A
)  ->  ( (
( abs `  (
u  -  B ) )  <  y  /\  ( abs `  ( -u v  -  -u C ) )  <  z )  ->  ( abs `  (
( u  +  -u v )  -  ( B  +  -u C ) ) )  <  A
) ) )
154, 14syl 15 . . . . . . . 8  |-  ( v  e.  CC  ->  ( A. w  e.  CC  ( ( ( abs `  ( u  -  B
) )  <  y  /\  ( abs `  (
w  -  -u C
) )  <  z
)  ->  ( abs `  ( ( u  +  w )  -  ( B  +  -u C ) ) )  <  A
)  ->  ( (
( abs `  (
u  -  B ) )  <  y  /\  ( abs `  ( -u v  -  -u C ) )  <  z )  ->  ( abs `  (
( u  +  -u v )  -  ( B  +  -u C ) ) )  <  A
) ) )
1615adantl 452 . . . . . . 7  |-  ( ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  u  e.  CC )  /\  v  e.  CC )  ->  ( A. w  e.  CC  ( ( ( abs `  ( u  -  B ) )  <  y  /\  ( abs `  ( w  -  -u C ) )  < 
z )  ->  ( abs `  ( ( u  +  w )  -  ( B  +  -u C
) ) )  < 
A )  ->  (
( ( abs `  (
u  -  B ) )  <  y  /\  ( abs `  ( -u v  -  -u C ) )  <  z )  ->  ( abs `  (
( u  +  -u v )  -  ( B  +  -u C ) ) )  <  A
) ) )
17 simpr 447 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  u  e.  CC )  /\  v  e.  CC )  ->  v  e.  CC )
18 simpll3 996 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  u  e.  CC )  /\  v  e.  CC )  ->  C  e.  CC )
1917, 18neg2subd 9190 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  u  e.  CC )  /\  v  e.  CC )  ->  ( -u v  -  -u C )  =  ( C  -  v
) )
2019fveq2d 5545 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  u  e.  CC )  /\  v  e.  CC )  ->  ( abs `  ( -u v  -  -u C
) )  =  ( abs `  ( C  -  v ) ) )
2118, 17abssubd 11951 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  u  e.  CC )  /\  v  e.  CC )  ->  ( abs `  ( C  -  v )
)  =  ( abs `  ( v  -  C
) ) )
2220, 21eqtrd 2328 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  u  e.  CC )  /\  v  e.  CC )  ->  ( abs `  ( -u v  -  -u C
) )  =  ( abs `  ( v  -  C ) ) )
2322breq1d 4049 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  u  e.  CC )  /\  v  e.  CC )  ->  ( ( abs `  ( -u v  -  -u C ) )  < 
z  <->  ( abs `  (
v  -  C ) )  <  z ) )
2423anbi2d 684 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  u  e.  CC )  /\  v  e.  CC )  ->  ( ( ( abs `  ( u  -  B ) )  <  y  /\  ( abs `  ( -u v  -  -u C ) )  <  z )  <->  ( ( abs `  ( u  -  B ) )  < 
y  /\  ( abs `  ( v  -  C
) )  <  z
) ) )
25 negsub 9111 . . . . . . . . . . . 12  |-  ( ( u  e.  CC  /\  v  e.  CC )  ->  ( u  +  -u v )  =  ( u  -  v ) )
2625adantll 694 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  u  e.  CC )  /\  v  e.  CC )  ->  ( u  +  -u v )  =  ( u  -  v ) )
27 simpll2 995 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  u  e.  CC )  /\  v  e.  CC )  ->  B  e.  CC )
2827, 18negsubd 9179 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  u  e.  CC )  /\  v  e.  CC )  ->  ( B  +  -u C )  =  ( B  -  C ) )
2926, 28oveq12d 5892 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  u  e.  CC )  /\  v  e.  CC )  ->  ( ( u  +  -u v )  -  ( B  +  -u C
) )  =  ( ( u  -  v
)  -  ( B  -  C ) ) )
3029fveq2d 5545 . . . . . . . . 9  |-  ( ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  u  e.  CC )  /\  v  e.  CC )  ->  ( abs `  (
( u  +  -u v )  -  ( B  +  -u C ) ) )  =  ( abs `  ( ( u  -  v )  -  ( B  -  C ) ) ) )
3130breq1d 4049 . . . . . . . 8  |-  ( ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  u  e.  CC )  /\  v  e.  CC )  ->  ( ( abs `  ( ( u  +  -u v )  -  ( B  +  -u C ) ) )  <  A  <->  ( abs `  ( ( u  -  v )  -  ( B  -  C ) ) )  <  A ) )
3224, 31imbi12d 311 . . . . . . 7  |-  ( ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  u  e.  CC )  /\  v  e.  CC )  ->  ( ( ( ( abs `  (
u  -  B ) )  <  y  /\  ( abs `  ( -u v  -  -u C ) )  <  z )  ->  ( abs `  (
( u  +  -u v )  -  ( B  +  -u C ) ) )  <  A
)  <->  ( ( ( abs `  ( u  -  B ) )  <  y  /\  ( abs `  ( v  -  C ) )  < 
z )  ->  ( abs `  ( ( u  -  v )  -  ( B  -  C
) ) )  < 
A ) ) )
3316, 32sylibd 205 . . . . . 6  |-  ( ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  u  e.  CC )  /\  v  e.  CC )  ->  ( A. w  e.  CC  ( ( ( abs `  ( u  -  B ) )  <  y  /\  ( abs `  ( w  -  -u C ) )  < 
z )  ->  ( abs `  ( ( u  +  w )  -  ( B  +  -u C
) ) )  < 
A )  ->  (
( ( abs `  (
u  -  B ) )  <  y  /\  ( abs `  ( v  -  C ) )  <  z )  -> 
( abs `  (
( u  -  v
)  -  ( B  -  C ) ) )  <  A ) ) )
3433ralrimdva 2646 . . . . 5  |-  ( ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  /\  u  e.  CC )  ->  ( A. w  e.  CC  ( ( ( abs `  ( u  -  B ) )  <  y  /\  ( abs `  ( w  -  -u C ) )  < 
z )  ->  ( abs `  ( ( u  +  w )  -  ( B  +  -u C
) ) )  < 
A )  ->  A. v  e.  CC  ( ( ( abs `  ( u  -  B ) )  <  y  /\  ( abs `  ( v  -  C ) )  < 
z )  ->  ( abs `  ( ( u  -  v )  -  ( B  -  C
) ) )  < 
A ) ) )
3534ralimdva 2634 . . . 4  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A. u  e.  CC  A. w  e.  CC  (
( ( abs `  (
u  -  B ) )  <  y  /\  ( abs `  ( w  -  -u C ) )  <  z )  -> 
( abs `  (
( u  +  w
)  -  ( B  +  -u C ) ) )  <  A )  ->  A. u  e.  CC  A. v  e.  CC  (
( ( abs `  (
u  -  B ) )  <  y  /\  ( abs `  ( v  -  C ) )  <  z )  -> 
( abs `  (
( u  -  v
)  -  ( B  -  C ) ) )  <  A ) ) )
3635reximdv 2667 . . 3  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  ( E. z  e.  RR+  A. u  e.  CC  A. w  e.  CC  ( ( ( abs `  ( u  -  B ) )  <  y  /\  ( abs `  ( w  -  -u C ) )  < 
z )  ->  ( abs `  ( ( u  +  w )  -  ( B  +  -u C
) ) )  < 
A )  ->  E. z  e.  RR+  A. u  e.  CC  A. v  e.  CC  ( ( ( abs `  ( u  -  B ) )  <  y  /\  ( abs `  ( v  -  C ) )  < 
z )  ->  ( abs `  ( ( u  -  v )  -  ( B  -  C
) ) )  < 
A ) ) )
3736reximdv 2667 . 2  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  ( E. y  e.  RR+  E. z  e.  RR+  A. u  e.  CC  A. w  e.  CC  ( ( ( abs `  ( u  -  B ) )  <  y  /\  ( abs `  ( w  -  -u C ) )  < 
z )  ->  ( abs `  ( ( u  +  w )  -  ( B  +  -u C
) ) )  < 
A )  ->  E. y  e.  RR+  E. z  e.  RR+  A. u  e.  CC  A. v  e.  CC  (
( ( abs `  (
u  -  B ) )  <  y  /\  ( abs `  ( v  -  C ) )  <  z )  -> 
( abs `  (
( u  -  v
)  -  ( B  -  C ) ) )  <  A ) ) )
383, 37mpd 14 1  |-  ( ( A  e.  RR+  /\  B  e.  CC  /\  C  e.  CC )  ->  E. y  e.  RR+  E. z  e.  RR+  A. u  e.  CC  A. v  e.  CC  (
( ( abs `  (
u  -  B ) )  <  y  /\  ( abs `  ( v  -  C ) )  <  z )  -> 
( abs `  (
( u  -  v
)  -  ( B  -  C ) ) )  <  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   A.wral 2556   E.wrex 2557   class class class wbr 4039   ` cfv 5271  (class class class)co 5874   CCcc 8751    + caddc 8756    < clt 8883    - cmin 9053   -ucneg 9054   RR+crp 10370   abscabs 11735
This theorem is referenced by:  climsub  12123  rlimsub  12133  subcn  18386
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-sup 7210  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-n0 9982  df-z 10041  df-uz 10247  df-rp 10371  df-seq 11063  df-exp 11121  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737
  Copyright terms: Public domain W3C validator