Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subdivcomb1 Unicode version

Theorem subdivcomb1 24090
Description: Bring a term in a subtraction into the numerator. (Contributed by Scott Fenton, 3-Jul-2013.)
Assertion
Ref Expression
subdivcomb1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C  =/=  0 ) )  -> 
( ( ( C  x.  A )  -  B )  /  C
)  =  ( A  -  ( B  /  C ) ) )

Proof of Theorem subdivcomb1
StepHypRef Expression
1 simp3l 983 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C  =/=  0 ) )  ->  C  e.  CC )
2 simp1 955 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C  =/=  0 ) )  ->  A  e.  CC )
31, 2mulcld 8855 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C  =/=  0 ) )  -> 
( C  x.  A
)  e.  CC )
4 divsubdir 9456 . . 3  |-  ( ( ( C  x.  A
)  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C  =/=  0 ) )  -> 
( ( ( C  x.  A )  -  B )  /  C
)  =  ( ( ( C  x.  A
)  /  C )  -  ( B  /  C ) ) )
53, 4syld3an1 1228 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C  =/=  0 ) )  -> 
( ( ( C  x.  A )  -  B )  /  C
)  =  ( ( ( C  x.  A
)  /  C )  -  ( B  /  C ) ) )
6 divcan3 9448 . . . . 5  |-  ( ( A  e.  CC  /\  C  e.  CC  /\  C  =/=  0 )  ->  (
( C  x.  A
)  /  C )  =  A )
763expb 1152 . . . 4  |-  ( ( A  e.  CC  /\  ( C  e.  CC  /\  C  =/=  0 ) )  ->  ( ( C  x.  A )  /  C )  =  A )
873adant2 974 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C  =/=  0 ) )  -> 
( ( C  x.  A )  /  C
)  =  A )
98oveq1d 5873 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C  =/=  0 ) )  -> 
( ( ( C  x.  A )  /  C )  -  ( B  /  C ) )  =  ( A  -  ( B  /  C
) ) )
105, 9eqtrd 2315 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C  =/=  0 ) )  -> 
( ( ( C  x.  A )  -  B )  /  C
)  =  ( A  -  ( B  /  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446  (class class class)co 5858   CCcc 8735   0cc0 8737    x. cmul 8742    - cmin 9037    / cdiv 9423
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-po 4314  df-so 4315  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-riota 6304  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424
  Copyright terms: Public domain W3C validator