Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subfaclim Unicode version

Theorem subfaclim 23719
Description: The subfactorial converges rapidly to  N !  /  _e. (Contributed by Mario Carneiro, 23-Jan-2015.)
Hypotheses
Ref Expression
derang.d  |-  D  =  ( x  e.  Fin  |->  ( # `  { f  |  ( f : x -1-1-onto-> x  /\  A. y  e.  x  ( f `  y )  =/=  y
) } ) )
subfac.n  |-  S  =  ( n  e.  NN0  |->  ( D `  ( 1 ... n ) ) )
Assertion
Ref Expression
subfaclim  |-  ( N  e.  NN  ->  ( abs `  ( ( ( ! `  N )  /  _e )  -  ( S `  N ) ) )  <  (
1  /  N ) )
Distinct variable groups:    f, n, x, y, N    D, n    S, n, x, y
Allowed substitution hints:    D( x, y, f)    S( f)

Proof of Theorem subfaclim
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 nnnn0 9972 . . . . . . 7  |-  ( N  e.  NN  ->  N  e.  NN0 )
2 faccl 11298 . . . . . . 7  |-  ( N  e.  NN0  ->  ( ! `
 N )  e.  NN )
31, 2syl 15 . . . . . 6  |-  ( N  e.  NN  ->  ( ! `  N )  e.  NN )
43nncnd 9762 . . . . 5  |-  ( N  e.  NN  ->  ( ! `  N )  e.  CC )
5 ere 12370 . . . . . . 7  |-  _e  e.  RR
65recni 8849 . . . . . 6  |-  _e  e.  CC
7 epos 12485 . . . . . . 7  |-  0  <  _e
85, 7gt0ne0ii 9309 . . . . . 6  |-  _e  =/=  0
9 divcl 9430 . . . . . 6  |-  ( ( ( ! `  N
)  e.  CC  /\  _e  e.  CC  /\  _e  =/=  0 )  ->  (
( ! `  N
)  /  _e )  e.  CC )
106, 8, 9mp3an23 1269 . . . . 5  |-  ( ( ! `  N )  e.  CC  ->  (
( ! `  N
)  /  _e )  e.  CC )
114, 10syl 15 . . . 4  |-  ( N  e.  NN  ->  (
( ! `  N
)  /  _e )  e.  CC )
12 derang.d . . . . . . . 8  |-  D  =  ( x  e.  Fin  |->  ( # `  { f  |  ( f : x -1-1-onto-> x  /\  A. y  e.  x  ( f `  y )  =/=  y
) } ) )
13 subfac.n . . . . . . . 8  |-  S  =  ( n  e.  NN0  |->  ( D `  ( 1 ... n ) ) )
1412, 13subfacf 23706 . . . . . . 7  |-  S : NN0
--> NN0
1514ffvelrni 5664 . . . . . 6  |-  ( N  e.  NN0  ->  ( S `
 N )  e. 
NN0 )
161, 15syl 15 . . . . 5  |-  ( N  e.  NN  ->  ( S `  N )  e.  NN0 )
1716nn0cnd 10020 . . . 4  |-  ( N  e.  NN  ->  ( S `  N )  e.  CC )
1811, 17subcld 9157 . . 3  |-  ( N  e.  NN  ->  (
( ( ! `  N )  /  _e )  -  ( S `  N ) )  e.  CC )
1918abscld 11918 . 2  |-  ( N  e.  NN  ->  ( abs `  ( ( ( ! `  N )  /  _e )  -  ( S `  N ) ) )  e.  RR )
20 peano2nn 9758 . . . . 5  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  NN )
2120peano2nnd 9763 . . . 4  |-  ( N  e.  NN  ->  (
( N  +  1 )  +  1 )  e.  NN )
2221nnred 9761 . . 3  |-  ( N  e.  NN  ->  (
( N  +  1 )  +  1 )  e.  RR )
2320, 20nnmulcld 9793 . . 3  |-  ( N  e.  NN  ->  (
( N  +  1 )  x.  ( N  +  1 ) )  e.  NN )
2422, 23nndivred 9794 . 2  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  +  1 )  /  ( ( N  +  1 )  x.  ( N  + 
1 ) ) )  e.  RR )
25 nnrecre 9782 . 2  |-  ( N  e.  NN  ->  (
1  /  N )  e.  RR )
26 eqid 2283 . . . . . 6  |-  ( n  e.  NN0  |->  ( (
-u 1 ^ n
)  /  ( ! `
 n ) ) )  =  ( n  e.  NN0  |->  ( (
-u 1 ^ n
)  /  ( ! `
 n ) ) )
27 eqid 2283 . . . . . 6  |-  ( n  e.  NN0  |->  ( ( ( abs `  -u 1
) ^ n )  /  ( ! `  n ) ) )  =  ( n  e. 
NN0  |->  ( ( ( abs `  -u 1
) ^ n )  /  ( ! `  n ) ) )
28 eqid 2283 . . . . . 6  |-  ( n  e.  NN0  |->  ( ( ( ( abs `  -u 1
) ^ ( N  +  1 ) )  /  ( ! `  ( N  +  1
) ) )  x.  ( ( 1  / 
( ( N  + 
1 )  +  1 ) ) ^ n
) ) )  =  ( n  e.  NN0  |->  ( ( ( ( abs `  -u 1
) ^ ( N  +  1 ) )  /  ( ! `  ( N  +  1
) ) )  x.  ( ( 1  / 
( ( N  + 
1 )  +  1 ) ) ^ n
) ) )
29 neg1cn 9813 . . . . . . 7  |-  -u 1  e.  CC
3029a1i 10 . . . . . 6  |-  ( N  e.  NN  ->  -u 1  e.  CC )
31 ax-1cn 8795 . . . . . . . . . 10  |-  1  e.  CC
3231absnegi 11883 . . . . . . . . 9  |-  ( abs `  -u 1 )  =  ( abs `  1
)
33 abs1 11782 . . . . . . . . 9  |-  ( abs `  1 )  =  1
3432, 33eqtri 2303 . . . . . . . 8  |-  ( abs `  -u 1 )  =  1
35 1le1 9396 . . . . . . . 8  |-  1  <_  1
3634, 35eqbrtri 4042 . . . . . . 7  |-  ( abs `  -u 1 )  <_ 
1
3736a1i 10 . . . . . 6  |-  ( N  e.  NN  ->  ( abs `  -u 1 )  <_ 
1 )
3826, 27, 28, 20, 30, 37eftlub 12389 . . . . 5  |-  ( N  e.  NN  ->  ( abs `  sum_ k  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( n  e.  NN0  |->  ( ( -u 1 ^ n )  / 
( ! `  n
) ) ) `  k ) )  <_ 
( ( ( abs `  -u 1 ) ^
( N  +  1 ) )  x.  (
( ( N  + 
1 )  +  1 )  /  ( ( ! `  ( N  +  1 ) )  x.  ( N  + 
1 ) ) ) ) )
3920nnnn0d 10018 . . . . . . . . 9  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  NN0 )
40 eluznn0 10288 . . . . . . . . 9  |-  ( ( ( N  +  1 )  e.  NN0  /\  k  e.  ( ZZ>= `  ( N  +  1
) ) )  -> 
k  e.  NN0 )
4139, 40sylan 457 . . . . . . . 8  |-  ( ( N  e.  NN  /\  k  e.  ( ZZ>= `  ( N  +  1
) ) )  -> 
k  e.  NN0 )
4226eftval 12358 . . . . . . . 8  |-  ( k  e.  NN0  ->  ( ( n  e.  NN0  |->  ( (
-u 1 ^ n
)  /  ( ! `
 n ) ) ) `  k )  =  ( ( -u
1 ^ k )  /  ( ! `  k ) ) )
4341, 42syl 15 . . . . . . 7  |-  ( ( N  e.  NN  /\  k  e.  ( ZZ>= `  ( N  +  1
) ) )  -> 
( ( n  e. 
NN0  |->  ( ( -u
1 ^ n )  /  ( ! `  n ) ) ) `
 k )  =  ( ( -u 1 ^ k )  / 
( ! `  k
) ) )
4443sumeq2dv 12176 . . . . . 6  |-  ( N  e.  NN  ->  sum_ k  e.  ( ZZ>= `  ( N  +  1 ) ) ( ( n  e. 
NN0  |->  ( ( -u
1 ^ n )  /  ( ! `  n ) ) ) `
 k )  = 
sum_ k  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( -u 1 ^ k )  /  ( ! `  k )
) )
4544fveq2d 5529 . . . . 5  |-  ( N  e.  NN  ->  ( abs `  sum_ k  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( n  e.  NN0  |->  ( ( -u 1 ^ n )  / 
( ! `  n
) ) ) `  k ) )  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( N  +  1
) ) ( (
-u 1 ^ k
)  /  ( ! `
 k ) ) ) )
4634oveq1i 5868 . . . . . . . 8  |-  ( ( abs `  -u 1
) ^ ( N  +  1 ) )  =  ( 1 ^ ( N  +  1 ) )
4720nnzd 10116 . . . . . . . . 9  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  ZZ )
48 1exp 11131 . . . . . . . . 9  |-  ( ( N  +  1 )  e.  ZZ  ->  (
1 ^ ( N  +  1 ) )  =  1 )
4947, 48syl 15 . . . . . . . 8  |-  ( N  e.  NN  ->  (
1 ^ ( N  +  1 ) )  =  1 )
5046, 49syl5eq 2327 . . . . . . 7  |-  ( N  e.  NN  ->  (
( abs `  -u 1
) ^ ( N  +  1 ) )  =  1 )
5150oveq1d 5873 . . . . . 6  |-  ( N  e.  NN  ->  (
( ( abs `  -u 1
) ^ ( N  +  1 ) )  x.  ( ( ( N  +  1 )  +  1 )  / 
( ( ! `  ( N  +  1
) )  x.  ( N  +  1 ) ) ) )  =  ( 1  x.  (
( ( N  + 
1 )  +  1 )  /  ( ( ! `  ( N  +  1 ) )  x.  ( N  + 
1 ) ) ) ) )
52 faccl 11298 . . . . . . . . . . 11  |-  ( ( N  +  1 )  e.  NN0  ->  ( ! `
 ( N  + 
1 ) )  e.  NN )
5339, 52syl 15 . . . . . . . . . 10  |-  ( N  e.  NN  ->  ( ! `  ( N  +  1 ) )  e.  NN )
5453, 20nnmulcld 9793 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( ! `  ( N  +  1 ) )  x.  ( N  +  1 ) )  e.  NN )
5522, 54nndivred 9794 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  +  1 )  /  ( ( ! `  ( N  +  1 ) )  x.  ( N  + 
1 ) ) )  e.  RR )
5655recnd 8861 . . . . . . 7  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  +  1 )  /  ( ( ! `  ( N  +  1 ) )  x.  ( N  + 
1 ) ) )  e.  CC )
5756mulid2d 8853 . . . . . 6  |-  ( N  e.  NN  ->  (
1  x.  ( ( ( N  +  1 )  +  1 )  /  ( ( ! `
 ( N  + 
1 ) )  x.  ( N  +  1 ) ) ) )  =  ( ( ( N  +  1 )  +  1 )  / 
( ( ! `  ( N  +  1
) )  x.  ( N  +  1 ) ) ) )
5851, 57eqtrd 2315 . . . . 5  |-  ( N  e.  NN  ->  (
( ( abs `  -u 1
) ^ ( N  +  1 ) )  x.  ( ( ( N  +  1 )  +  1 )  / 
( ( ! `  ( N  +  1
) )  x.  ( N  +  1 ) ) ) )  =  ( ( ( N  +  1 )  +  1 )  /  (
( ! `  ( N  +  1 ) )  x.  ( N  +  1 ) ) ) )
5938, 45, 583brtr3d 4052 . . . 4  |-  ( N  e.  NN  ->  ( abs `  sum_ k  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( -u 1 ^ k )  /  ( ! `  k )
) )  <_  (
( ( N  + 
1 )  +  1 )  /  ( ( ! `  ( N  +  1 ) )  x.  ( N  + 
1 ) ) ) )
60 eqid 2283 . . . . . . 7  |-  ( ZZ>= `  ( N  +  1
) )  =  (
ZZ>= `  ( N  + 
1 ) )
61 eftcl 12355 . . . . . . . . 9  |-  ( (
-u 1  e.  CC  /\  k  e.  NN0 )  ->  ( ( -u 1 ^ k )  / 
( ! `  k
) )  e.  CC )
6229, 61mpan 651 . . . . . . . 8  |-  ( k  e.  NN0  ->  ( (
-u 1 ^ k
)  /  ( ! `
 k ) )  e.  CC )
6341, 62syl 15 . . . . . . 7  |-  ( ( N  e.  NN  /\  k  e.  ( ZZ>= `  ( N  +  1
) ) )  -> 
( ( -u 1 ^ k )  / 
( ! `  k
) )  e.  CC )
6426eftlcvg 12386 . . . . . . . 8  |-  ( (
-u 1  e.  CC  /\  ( N  +  1 )  e.  NN0 )  ->  seq  ( N  + 
1 ) (  +  ,  ( n  e. 
NN0  |->  ( ( -u
1 ^ n )  /  ( ! `  n ) ) ) )  e.  dom  ~~>  )
6529, 39, 64sylancr 644 . . . . . . 7  |-  ( N  e.  NN  ->  seq  ( N  +  1
) (  +  , 
( n  e.  NN0  |->  ( ( -u 1 ^ n )  / 
( ! `  n
) ) ) )  e.  dom  ~~>  )
6660, 47, 43, 63, 65isumcl 12224 . . . . . 6  |-  ( N  e.  NN  ->  sum_ k  e.  ( ZZ>= `  ( N  +  1 ) ) ( ( -u 1 ^ k )  / 
( ! `  k
) )  e.  CC )
6766abscld 11918 . . . . 5  |-  ( N  e.  NN  ->  ( abs `  sum_ k  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( -u 1 ^ k )  /  ( ! `  k )
) )  e.  RR )
683nnred 9761 . . . . 5  |-  ( N  e.  NN  ->  ( ! `  N )  e.  RR )
693nngt0d 9789 . . . . 5  |-  ( N  e.  NN  ->  0  <  ( ! `  N
) )
70 lemul2 9609 . . . . 5  |-  ( ( ( abs `  sum_ k  e.  ( ZZ>= `  ( N  +  1
) ) ( (
-u 1 ^ k
)  /  ( ! `
 k ) ) )  e.  RR  /\  ( ( ( N  +  1 )  +  1 )  /  (
( ! `  ( N  +  1 ) )  x.  ( N  +  1 ) ) )  e.  RR  /\  ( ( ! `  N )  e.  RR  /\  0  <  ( ! `
 N ) ) )  ->  ( ( abs `  sum_ k  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( -u 1 ^ k )  /  ( ! `  k )
) )  <_  (
( ( N  + 
1 )  +  1 )  /  ( ( ! `  ( N  +  1 ) )  x.  ( N  + 
1 ) ) )  <-> 
( ( ! `  N )  x.  ( abs `  sum_ k  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( -u 1 ^ k )  /  ( ! `  k )
) ) )  <_ 
( ( ! `  N )  x.  (
( ( N  + 
1 )  +  1 )  /  ( ( ! `  ( N  +  1 ) )  x.  ( N  + 
1 ) ) ) ) ) )
7167, 55, 68, 69, 70syl112anc 1186 . . . 4  |-  ( N  e.  NN  ->  (
( abs `  sum_ k  e.  ( ZZ>= `  ( N  +  1
) ) ( (
-u 1 ^ k
)  /  ( ! `
 k ) ) )  <_  ( (
( N  +  1 )  +  1 )  /  ( ( ! `
 ( N  + 
1 ) )  x.  ( N  +  1 ) ) )  <->  ( ( ! `  N )  x.  ( abs `  sum_ k  e.  ( ZZ>= `  ( N  +  1
) ) ( (
-u 1 ^ k
)  /  ( ! `
 k ) ) ) )  <_  (
( ! `  N
)  x.  ( ( ( N  +  1 )  +  1 )  /  ( ( ! `
 ( N  + 
1 ) )  x.  ( N  +  1 ) ) ) ) ) )
7259, 71mpbid 201 . . 3  |-  ( N  e.  NN  ->  (
( ! `  N
)  x.  ( abs `  sum_ k  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( -u 1 ^ k )  /  ( ! `  k )
) ) )  <_ 
( ( ! `  N )  x.  (
( ( N  + 
1 )  +  1 )  /  ( ( ! `  ( N  +  1 ) )  x.  ( N  + 
1 ) ) ) ) )
7312, 13subfacval2 23718 . . . . . . . . . 10  |-  ( N  e.  NN0  ->  ( S `
 N )  =  ( ( ! `  N )  x.  sum_ k  e.  ( 0 ... N ) ( ( -u 1 ^ k )  /  ( ! `  k )
) ) )
741, 73syl 15 . . . . . . . . 9  |-  ( N  e.  NN  ->  ( S `  N )  =  ( ( ! `
 N )  x. 
sum_ k  e.  ( 0 ... N ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) ) )
75 nncn 9754 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  N  e.  CC )
76 pncan 9057 . . . . . . . . . . . . 13  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  + 
1 )  -  1 )  =  N )
7775, 31, 76sylancl 643 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
( N  +  1 )  -  1 )  =  N )
7877oveq2d 5874 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
0 ... ( ( N  +  1 )  - 
1 ) )  =  ( 0 ... N
) )
7978sumeq1d 12174 . . . . . . . . . 10  |-  ( N  e.  NN  ->  sum_ k  e.  ( 0 ... (
( N  +  1 )  -  1 ) ) ( ( -u
1 ^ k )  /  ( ! `  k ) )  = 
sum_ k  e.  ( 0 ... N ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) )
8079oveq2d 5874 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( ! `  N
)  x.  sum_ k  e.  ( 0 ... (
( N  +  1 )  -  1 ) ) ( ( -u
1 ^ k )  /  ( ! `  k ) ) )  =  ( ( ! `
 N )  x. 
sum_ k  e.  ( 0 ... N ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) ) )
8174, 80eqtr4d 2318 . . . . . . . 8  |-  ( N  e.  NN  ->  ( S `  N )  =  ( ( ! `
 N )  x. 
sum_ k  e.  ( 0 ... ( ( N  +  1 )  -  1 ) ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) ) )
8281oveq1d 5873 . . . . . . 7  |-  ( N  e.  NN  ->  (
( S `  N
)  +  ( ( ! `  N )  x.  sum_ k  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( -u 1 ^ k )  /  ( ! `  k )
) ) )  =  ( ( ( ! `
 N )  x. 
sum_ k  e.  ( 0 ... ( ( N  +  1 )  -  1 ) ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) )  +  ( ( ! `  N )  x.  sum_ k  e.  ( ZZ>= `  ( N  +  1
) ) ( (
-u 1 ^ k
)  /  ( ! `
 k ) ) ) ) )
83 divrec 9440 . . . . . . . . . 10  |-  ( ( ( ! `  N
)  e.  CC  /\  _e  e.  CC  /\  _e  =/=  0 )  ->  (
( ! `  N
)  /  _e )  =  ( ( ! `
 N )  x.  ( 1  /  _e ) ) )
846, 8, 83mp3an23 1269 . . . . . . . . 9  |-  ( ( ! `  N )  e.  CC  ->  (
( ! `  N
)  /  _e )  =  ( ( ! `
 N )  x.  ( 1  /  _e ) ) )
854, 84syl 15 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( ! `  N
)  /  _e )  =  ( ( ! `
 N )  x.  ( 1  /  _e ) ) )
86 df-e 12350 . . . . . . . . . . . 12  |-  _e  =  ( exp `  1 )
8786oveq2i 5869 . . . . . . . . . . 11  |-  ( 1  /  _e )  =  ( 1  /  ( exp `  1 ) )
88 efneg 12378 . . . . . . . . . . . 12  |-  ( 1  e.  CC  ->  ( exp `  -u 1 )  =  ( 1  /  ( exp `  1 ) ) )
8931, 88ax-mp 8 . . . . . . . . . . 11  |-  ( exp `  -u 1 )  =  ( 1  /  ( exp `  1 ) )
90 efval 12361 . . . . . . . . . . . 12  |-  ( -u
1  e.  CC  ->  ( exp `  -u 1
)  =  sum_ k  e.  NN0  ( ( -u
1 ^ k )  /  ( ! `  k ) ) )
9129, 90ax-mp 8 . . . . . . . . . . 11  |-  ( exp `  -u 1 )  = 
sum_ k  e.  NN0  ( ( -u 1 ^ k )  / 
( ! `  k
) )
9287, 89, 913eqtr2i 2309 . . . . . . . . . 10  |-  ( 1  /  _e )  = 
sum_ k  e.  NN0  ( ( -u 1 ^ k )  / 
( ! `  k
) )
93 nn0uz 10262 . . . . . . . . . . 11  |-  NN0  =  ( ZZ>= `  0 )
9442adantl 452 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( ( n  e. 
NN0  |->  ( ( -u
1 ^ n )  /  ( ! `  n ) ) ) `
 k )  =  ( ( -u 1 ^ k )  / 
( ! `  k
) ) )
9562adantl 452 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  k  e.  NN0 )  -> 
( ( -u 1 ^ k )  / 
( ! `  k
) )  e.  CC )
96 0nn0 9980 . . . . . . . . . . . . 13  |-  0  e.  NN0
9726eftlcvg 12386 . . . . . . . . . . . . 13  |-  ( (
-u 1  e.  CC  /\  0  e.  NN0 )  ->  seq  0 (  +  ,  ( n  e. 
NN0  |->  ( ( -u
1 ^ n )  /  ( ! `  n ) ) ) )  e.  dom  ~~>  )
9829, 96, 97mp2an 653 . . . . . . . . . . . 12  |-  seq  0
(  +  ,  ( n  e.  NN0  |->  ( (
-u 1 ^ n
)  /  ( ! `
 n ) ) ) )  e.  dom  ~~>
9998a1i 10 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  seq  0 (  +  , 
( n  e.  NN0  |->  ( ( -u 1 ^ n )  / 
( ! `  n
) ) ) )  e.  dom  ~~>  )
10093, 60, 39, 94, 95, 99isumsplit 12299 . . . . . . . . . 10  |-  ( N  e.  NN  ->  sum_ k  e.  NN0  ( ( -u
1 ^ k )  /  ( ! `  k ) )  =  ( sum_ k  e.  ( 0 ... ( ( N  +  1 )  -  1 ) ) ( ( -u 1 ^ k )  / 
( ! `  k
) )  +  sum_ k  e.  ( ZZ>= `  ( N  +  1
) ) ( (
-u 1 ^ k
)  /  ( ! `
 k ) ) ) )
10192, 100syl5eq 2327 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
1  /  _e )  =  ( sum_ k  e.  ( 0 ... (
( N  +  1 )  -  1 ) ) ( ( -u
1 ^ k )  /  ( ! `  k ) )  + 
sum_ k  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( -u 1 ^ k )  /  ( ! `  k )
) ) )
102101oveq2d 5874 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( ! `  N
)  x.  ( 1  /  _e ) )  =  ( ( ! `
 N )  x.  ( sum_ k  e.  ( 0 ... ( ( N  +  1 )  -  1 ) ) ( ( -u 1 ^ k )  / 
( ! `  k
) )  +  sum_ k  e.  ( ZZ>= `  ( N  +  1
) ) ( (
-u 1 ^ k
)  /  ( ! `
 k ) ) ) ) )
103 fzfid 11035 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
0 ... ( ( N  +  1 )  - 
1 ) )  e. 
Fin )
104 elfznn0 10822 . . . . . . . . . . . 12  |-  ( k  e.  ( 0 ... ( ( N  + 
1 )  -  1 ) )  ->  k  e.  NN0 )
105104adantl 452 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  k  e.  ( 0 ... ( ( N  +  1 )  - 
1 ) ) )  ->  k  e.  NN0 )
10629, 105, 61sylancr 644 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  k  e.  ( 0 ... ( ( N  +  1 )  - 
1 ) ) )  ->  ( ( -u
1 ^ k )  /  ( ! `  k ) )  e.  CC )
107103, 106fsumcl 12206 . . . . . . . . 9  |-  ( N  e.  NN  ->  sum_ k  e.  ( 0 ... (
( N  +  1 )  -  1 ) ) ( ( -u
1 ^ k )  /  ( ! `  k ) )  e.  CC )
1084, 107, 66adddid 8859 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( ! `  N
)  x.  ( sum_ k  e.  ( 0 ... ( ( N  +  1 )  - 
1 ) ) ( ( -u 1 ^ k )  /  ( ! `  k )
)  +  sum_ k  e.  ( ZZ>= `  ( N  +  1 ) ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) ) )  =  ( ( ( ! `  N )  x.  sum_ k  e.  ( 0 ... ( ( N  +  1 )  -  1 ) ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) )  +  ( ( ! `  N )  x.  sum_ k  e.  ( ZZ>= `  ( N  +  1
) ) ( (
-u 1 ^ k
)  /  ( ! `
 k ) ) ) ) )
10985, 102, 1083eqtrd 2319 . . . . . . 7  |-  ( N  e.  NN  ->  (
( ! `  N
)  /  _e )  =  ( ( ( ! `  N )  x.  sum_ k  e.  ( 0 ... ( ( N  +  1 )  -  1 ) ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) )  +  ( ( ! `  N )  x.  sum_ k  e.  ( ZZ>= `  ( N  +  1
) ) ( (
-u 1 ^ k
)  /  ( ! `
 k ) ) ) ) )
11082, 109eqtr4d 2318 . . . . . 6  |-  ( N  e.  NN  ->  (
( S `  N
)  +  ( ( ! `  N )  x.  sum_ k  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( -u 1 ^ k )  /  ( ! `  k )
) ) )  =  ( ( ! `  N )  /  _e ) )
1114, 66mulcld 8855 . . . . . . 7  |-  ( N  e.  NN  ->  (
( ! `  N
)  x.  sum_ k  e.  ( ZZ>= `  ( N  +  1 ) ) ( ( -u 1 ^ k )  / 
( ! `  k
) ) )  e.  CC )
11211, 17, 111subaddd 9175 . . . . . 6  |-  ( N  e.  NN  ->  (
( ( ( ! `
 N )  /  _e )  -  ( S `  N )
)  =  ( ( ! `  N )  x.  sum_ k  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( -u 1 ^ k )  /  ( ! `  k )
) )  <->  ( ( S `  N )  +  ( ( ! `
 N )  x. 
sum_ k  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( -u 1 ^ k )  /  ( ! `  k )
) ) )  =  ( ( ! `  N )  /  _e ) ) )
113110, 112mpbird 223 . . . . 5  |-  ( N  e.  NN  ->  (
( ( ! `  N )  /  _e )  -  ( S `  N ) )  =  ( ( ! `  N )  x.  sum_ k  e.  ( ZZ>= `  ( N  +  1
) ) ( (
-u 1 ^ k
)  /  ( ! `
 k ) ) ) )
114113fveq2d 5529 . . . 4  |-  ( N  e.  NN  ->  ( abs `  ( ( ( ! `  N )  /  _e )  -  ( S `  N ) ) )  =  ( abs `  ( ( ! `  N )  x.  sum_ k  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( -u 1 ^ k )  /  ( ! `  k )
) ) ) )
1154, 66absmuld 11936 . . . 4  |-  ( N  e.  NN  ->  ( abs `  ( ( ! `
 N )  x. 
sum_ k  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( -u 1 ^ k )  /  ( ! `  k )
) ) )  =  ( ( abs `  ( ! `  N )
)  x.  ( abs `  sum_ k  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( -u 1 ^ k )  /  ( ! `  k )
) ) ) )
1163nnnn0d 10018 . . . . . . 7  |-  ( N  e.  NN  ->  ( ! `  N )  e.  NN0 )
117116nn0ge0d 10021 . . . . . 6  |-  ( N  e.  NN  ->  0  <_  ( ! `  N
) )
11868, 117absidd 11905 . . . . 5  |-  ( N  e.  NN  ->  ( abs `  ( ! `  N ) )  =  ( ! `  N
) )
119118oveq1d 5873 . . . 4  |-  ( N  e.  NN  ->  (
( abs `  ( ! `  N )
)  x.  ( abs `  sum_ k  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( -u 1 ^ k )  /  ( ! `  k )
) ) )  =  ( ( ! `  N )  x.  ( abs `  sum_ k  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( -u 1 ^ k )  /  ( ! `  k )
) ) ) )
120114, 115, 1193eqtrd 2319 . . 3  |-  ( N  e.  NN  ->  ( abs `  ( ( ( ! `  N )  /  _e )  -  ( S `  N ) ) )  =  ( ( ! `  N
)  x.  ( abs `  sum_ k  e.  (
ZZ>= `  ( N  + 
1 ) ) ( ( -u 1 ^ k )  /  ( ! `  k )
) ) ) )
121 facp1 11293 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( ! `
 ( N  + 
1 ) )  =  ( ( ! `  N )  x.  ( N  +  1 ) ) )
1221, 121syl 15 . . . . . . 7  |-  ( N  e.  NN  ->  ( ! `  ( N  +  1 ) )  =  ( ( ! `
 N )  x.  ( N  +  1 ) ) )
123122oveq1d 5873 . . . . . 6  |-  ( N  e.  NN  ->  (
( ! `  ( N  +  1 ) )  x.  ( N  +  1 ) )  =  ( ( ( ! `  N )  x.  ( N  + 
1 ) )  x.  ( N  +  1 ) ) )
12420nncnd 9762 . . . . . . 7  |-  ( N  e.  NN  ->  ( N  +  1 )  e.  CC )
1254, 124, 124mulassd 8858 . . . . . 6  |-  ( N  e.  NN  ->  (
( ( ! `  N )  x.  ( N  +  1 ) )  x.  ( N  +  1 ) )  =  ( ( ! `
 N )  x.  ( ( N  + 
1 )  x.  ( N  +  1 ) ) ) )
126123, 125eqtr2d 2316 . . . . 5  |-  ( N  e.  NN  ->  (
( ! `  N
)  x.  ( ( N  +  1 )  x.  ( N  + 
1 ) ) )  =  ( ( ! `
 ( N  + 
1 ) )  x.  ( N  +  1 ) ) )
127126oveq2d 5874 . . . 4  |-  ( N  e.  NN  ->  (
( ( ! `  N )  x.  (
( N  +  1 )  +  1 ) )  /  ( ( ! `  N )  x.  ( ( N  +  1 )  x.  ( N  +  1 ) ) ) )  =  ( ( ( ! `  N )  x.  ( ( N  +  1 )  +  1 ) )  / 
( ( ! `  ( N  +  1
) )  x.  ( N  +  1 ) ) ) )
12821nncnd 9762 . . . . 5  |-  ( N  e.  NN  ->  (
( N  +  1 )  +  1 )  e.  CC )
12923nncnd 9762 . . . . 5  |-  ( N  e.  NN  ->  (
( N  +  1 )  x.  ( N  +  1 ) )  e.  CC )
13023nnne0d 9790 . . . . 5  |-  ( N  e.  NN  ->  (
( N  +  1 )  x.  ( N  +  1 ) )  =/=  0 )
1313nnne0d 9790 . . . . 5  |-  ( N  e.  NN  ->  ( ! `  N )  =/=  0 )
132128, 129, 4, 130, 131divcan5d 9562 . . . 4  |-  ( N  e.  NN  ->  (
( ( ! `  N )  x.  (
( N  +  1 )  +  1 ) )  /  ( ( ! `  N )  x.  ( ( N  +  1 )  x.  ( N  +  1 ) ) ) )  =  ( ( ( N  +  1 )  +  1 )  / 
( ( N  + 
1 )  x.  ( N  +  1 ) ) ) )
13354nncnd 9762 . . . . 5  |-  ( N  e.  NN  ->  (
( ! `  ( N  +  1 ) )  x.  ( N  +  1 ) )  e.  CC )
13454nnne0d 9790 . . . . 5  |-  ( N  e.  NN  ->  (
( ! `  ( N  +  1 ) )  x.  ( N  +  1 ) )  =/=  0 )
1354, 128, 133, 134divassd 9571 . . . 4  |-  ( N  e.  NN  ->  (
( ( ! `  N )  x.  (
( N  +  1 )  +  1 ) )  /  ( ( ! `  ( N  +  1 ) )  x.  ( N  + 
1 ) ) )  =  ( ( ! `
 N )  x.  ( ( ( N  +  1 )  +  1 )  /  (
( ! `  ( N  +  1 ) )  x.  ( N  +  1 ) ) ) ) )
136127, 132, 1353eqtr3d 2323 . . 3  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  +  1 )  /  ( ( N  +  1 )  x.  ( N  + 
1 ) ) )  =  ( ( ! `
 N )  x.  ( ( ( N  +  1 )  +  1 )  /  (
( ! `  ( N  +  1 ) )  x.  ( N  +  1 ) ) ) ) )
13772, 120, 1363brtr4d 4053 . 2  |-  ( N  e.  NN  ->  ( abs `  ( ( ( ! `  N )  /  _e )  -  ( S `  N ) ) )  <_  (
( ( N  + 
1 )  +  1 )  /  ( ( N  +  1 )  x.  ( N  + 
1 ) ) ) )
138 nnmulcl 9769 . . . . . . 7  |-  ( ( ( ( N  + 
1 )  +  1 )  e.  NN  /\  N  e.  NN )  ->  ( ( ( N  +  1 )  +  1 )  x.  N
)  e.  NN )
13921, 138mpancom 650 . . . . . 6  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  +  1 )  x.  N )  e.  NN )
140139nnred 9761 . . . . 5  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  +  1 )  x.  N )  e.  RR )
141140ltp1d 9687 . . . 4  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  +  1 )  x.  N )  <  ( ( ( ( N  +  1 )  +  1 )  x.  N )  +  1 ) )
142129mulid2d 8853 . . . . 5  |-  ( N  e.  NN  ->  (
1  x.  ( ( N  +  1 )  x.  ( N  + 
1 ) ) )  =  ( ( N  +  1 )  x.  ( N  +  1 ) ) )
14331a1i 10 . . . . . 6  |-  ( N  e.  NN  ->  1  e.  CC )
14475, 143, 124adddird 8860 . . . . 5  |-  ( N  e.  NN  ->  (
( N  +  1 )  x.  ( N  +  1 ) )  =  ( ( N  x.  ( N  + 
1 ) )  +  ( 1  x.  ( N  +  1 ) ) ) )
14575, 124mulcomd 8856 . . . . . . 7  |-  ( N  e.  NN  ->  ( N  x.  ( N  +  1 ) )  =  ( ( N  +  1 )  x.  N ) )
146124mulid2d 8853 . . . . . . 7  |-  ( N  e.  NN  ->  (
1  x.  ( N  +  1 ) )  =  ( N  + 
1 ) )
147145, 146oveq12d 5876 . . . . . 6  |-  ( N  e.  NN  ->  (
( N  x.  ( N  +  1 ) )  +  ( 1  x.  ( N  + 
1 ) ) )  =  ( ( ( N  +  1 )  x.  N )  +  ( N  +  1 ) ) )
148124, 143, 75adddird 8860 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  +  1 )  x.  N )  =  ( ( ( N  +  1 )  x.  N )  +  ( 1  x.  N
) ) )
149148oveq1d 5873 . . . . . . 7  |-  ( N  e.  NN  ->  (
( ( ( N  +  1 )  +  1 )  x.  N
)  +  1 )  =  ( ( ( ( N  +  1 )  x.  N )  +  ( 1  x.  N ) )  +  1 ) )
15075mulid2d 8853 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
1  x.  N )  =  N )
151150oveq2d 5874 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  x.  N
)  +  ( 1  x.  N ) )  =  ( ( ( N  +  1 )  x.  N )  +  N ) )
152151oveq1d 5873 . . . . . . 7  |-  ( N  e.  NN  ->  (
( ( ( N  +  1 )  x.  N )  +  ( 1  x.  N ) )  +  1 )  =  ( ( ( ( N  +  1 )  x.  N )  +  N )  +  1 ) )
153124, 75mulcld 8855 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( N  +  1 )  x.  N )  e.  CC )
154153, 75, 143addassd 8857 . . . . . . 7  |-  ( N  e.  NN  ->  (
( ( ( N  +  1 )  x.  N )  +  N
)  +  1 )  =  ( ( ( N  +  1 )  x.  N )  +  ( N  +  1 ) ) )
155149, 152, 1543eqtrd 2319 . . . . . 6  |-  ( N  e.  NN  ->  (
( ( ( N  +  1 )  +  1 )  x.  N
)  +  1 )  =  ( ( ( N  +  1 )  x.  N )  +  ( N  +  1 ) ) )
156147, 155eqtr4d 2318 . . . . 5  |-  ( N  e.  NN  ->  (
( N  x.  ( N  +  1 ) )  +  ( 1  x.  ( N  + 
1 ) ) )  =  ( ( ( ( N  +  1 )  +  1 )  x.  N )  +  1 ) )
157142, 144, 1563eqtrd 2319 . . . 4  |-  ( N  e.  NN  ->  (
1  x.  ( ( N  +  1 )  x.  ( N  + 
1 ) ) )  =  ( ( ( ( N  +  1 )  +  1 )  x.  N )  +  1 ) )
158141, 157breqtrrd 4049 . . 3  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  +  1 )  x.  N )  <  ( 1  x.  ( ( N  + 
1 )  x.  ( N  +  1 ) ) ) )
159 nnre 9753 . . . . 5  |-  ( N  e.  NN  ->  N  e.  RR )
160 nngt0 9775 . . . . 5  |-  ( N  e.  NN  ->  0  <  N )
161159, 160jca 518 . . . 4  |-  ( N  e.  NN  ->  ( N  e.  RR  /\  0  <  N ) )
162 1re 8837 . . . . 5  |-  1  e.  RR
163162a1i 10 . . . 4  |-  ( N  e.  NN  ->  1  e.  RR )
164 nnre 9753 . . . . . 6  |-  ( ( ( N  +  1 )  x.  ( N  +  1 ) )  e.  NN  ->  (
( N  +  1 )  x.  ( N  +  1 ) )  e.  RR )
165 nngt0 9775 . . . . . 6  |-  ( ( ( N  +  1 )  x.  ( N  +  1 ) )  e.  NN  ->  0  <  ( ( N  + 
1 )  x.  ( N  +  1 ) ) )
166164, 165jca 518 . . . . 5  |-  ( ( ( N  +  1 )  x.  ( N  +  1 ) )  e.  NN  ->  (
( ( N  + 
1 )  x.  ( N  +  1 ) )  e.  RR  /\  0  <  ( ( N  +  1 )  x.  ( N  +  1 ) ) ) )
16723, 166syl 15 . . . 4  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  x.  ( N  +  1 ) )  e.  RR  /\  0  <  ( ( N  +  1 )  x.  ( N  +  1 ) ) ) )
168 lt2mul2div 9632 . . . 4  |-  ( ( ( ( ( N  +  1 )  +  1 )  e.  RR  /\  ( N  e.  RR  /\  0  <  N ) )  /\  ( 1  e.  RR  /\  (
( ( N  + 
1 )  x.  ( N  +  1 ) )  e.  RR  /\  0  <  ( ( N  +  1 )  x.  ( N  +  1 ) ) ) ) )  ->  ( (
( ( N  + 
1 )  +  1 )  x.  N )  <  ( 1  x.  ( ( N  + 
1 )  x.  ( N  +  1 ) ) )  <->  ( (
( N  +  1 )  +  1 )  /  ( ( N  +  1 )  x.  ( N  +  1 ) ) )  < 
( 1  /  N
) ) )
16922, 161, 163, 167, 168syl22anc 1183 . . 3  |-  ( N  e.  NN  ->  (
( ( ( N  +  1 )  +  1 )  x.  N
)  <  ( 1  x.  ( ( N  +  1 )  x.  ( N  +  1 ) ) )  <->  ( (
( N  +  1 )  +  1 )  /  ( ( N  +  1 )  x.  ( N  +  1 ) ) )  < 
( 1  /  N
) ) )
170158, 169mpbid 201 . 2  |-  ( N  e.  NN  ->  (
( ( N  + 
1 )  +  1 )  /  ( ( N  +  1 )  x.  ( N  + 
1 ) ) )  <  ( 1  /  N ) )
17119, 24, 25, 137, 170lelttrd 8974 1  |-  ( N  e.  NN  ->  ( abs `  ( ( ( ! `  N )  /  _e )  -  ( S `  N ) ) )  <  (
1  /  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   {cab 2269    =/= wne 2446   A.wral 2543   class class class wbr 4023    e. cmpt 4077   dom cdm 4689   -1-1-onto->wf1o 5254   ` cfv 5255  (class class class)co 5858   Fincfn 6863   CCcc 8735   RRcr 8736   0cc0 8737   1c1 8738    + caddc 8740    x. cmul 8742    < clt 8867    <_ cle 8868    - cmin 9037   -ucneg 9038    / cdiv 9423   NNcn 9746   NN0cn0 9965   ZZcz 10024   ZZ>=cuz 10230   ...cfz 10782    seq cseq 11046   ^cexp 11104   !cfa 11288   #chash 11337   abscabs 11719    ~~> cli 11958   sum_csu 12158   expce 12343   _eceu 12344
This theorem is referenced by:  subfacval3  23720
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816  ax-mulf 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-map 6774  df-pm 6775  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-oi 7225  df-card 7572  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-n0 9966  df-z 10025  df-uz 10231  df-q 10317  df-rp 10355  df-ico 10662  df-fz 10783  df-fzo 10871  df-fl 10925  df-seq 11047  df-exp 11105  df-fac 11289  df-bc 11316  df-hash 11338  df-shft 11562  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-limsup 11945  df-clim 11962  df-rlim 11963  df-sum 12159  df-ef 12349  df-e 12350
  Copyright terms: Public domain W3C validator