Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subfacval3 Structured version   Unicode version

Theorem subfacval3 24867
Description: Another closed form expression for the subfactorial. The expression  |_ `  (
x  +  1  / 
2 ) is a way of saying "rounded to the nearest integer". (Contributed by Mario Carneiro, 23-Jan-2015.)
Hypotheses
Ref Expression
derang.d  |-  D  =  ( x  e.  Fin  |->  ( # `  { f  |  ( f : x -1-1-onto-> x  /\  A. y  e.  x  ( f `  y )  =/=  y
) } ) )
subfac.n  |-  S  =  ( n  e.  NN0  |->  ( D `  ( 1 ... n ) ) )
Assertion
Ref Expression
subfacval3  |-  ( N  e.  NN  ->  ( S `  N )  =  ( |_ `  ( ( ( ! `
 N )  /  _e )  +  (
1  /  2 ) ) ) )
Distinct variable groups:    f, n, x, y, N    D, n    S, n, x, y
Allowed substitution hints:    D( x, y, f)    S( f)

Proof of Theorem subfacval3
StepHypRef Expression
1 nnnn0 10220 . . . . . . 7  |-  ( N  e.  NN  ->  N  e.  NN0 )
2 derang.d . . . . . . . . 9  |-  D  =  ( x  e.  Fin  |->  ( # `  { f  |  ( f : x -1-1-onto-> x  /\  A. y  e.  x  ( f `  y )  =/=  y
) } ) )
3 subfac.n . . . . . . . . 9  |-  S  =  ( n  e.  NN0  |->  ( D `  ( 1 ... n ) ) )
42, 3subfacf 24853 . . . . . . . 8  |-  S : NN0
--> NN0
54ffvelrni 5861 . . . . . . 7  |-  ( N  e.  NN0  ->  ( S `
 N )  e. 
NN0 )
61, 5syl 16 . . . . . 6  |-  ( N  e.  NN  ->  ( S `  N )  e.  NN0 )
76nn0zd 10365 . . . . 5  |-  ( N  e.  NN  ->  ( S `  N )  e.  ZZ )
87zred 10367 . . . 4  |-  ( N  e.  NN  ->  ( S `  N )  e.  RR )
9 faccl 11568 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( ! `
 N )  e.  NN )
101, 9syl 16 . . . . . . 7  |-  ( N  e.  NN  ->  ( ! `  N )  e.  NN )
1110nnred 10007 . . . . . 6  |-  ( N  e.  NN  ->  ( ! `  N )  e.  RR )
12 epr 12799 . . . . . 6  |-  _e  e.  RR+
13 rerpdivcl 10631 . . . . . 6  |-  ( ( ( ! `  N
)  e.  RR  /\  _e  e.  RR+ )  ->  (
( ! `  N
)  /  _e )  e.  RR )
1411, 12, 13sylancl 644 . . . . 5  |-  ( N  e.  NN  ->  (
( ! `  N
)  /  _e )  e.  RR )
15 1re 9082 . . . . . 6  |-  1  e.  RR
1615rehalfcli 10208 . . . . 5  |-  ( 1  /  2 )  e.  RR
17 readdcl 9065 . . . . 5  |-  ( ( ( ( ! `  N )  /  _e )  e.  RR  /\  (
1  /  2 )  e.  RR )  -> 
( ( ( ! `
 N )  /  _e )  +  (
1  /  2 ) )  e.  RR )
1814, 16, 17sylancl 644 . . . 4  |-  ( N  e.  NN  ->  (
( ( ! `  N )  /  _e )  +  ( 1  /  2 ) )  e.  RR )
19 elnn1uz2 10544 . . . . . . . 8  |-  ( N  e.  NN  <->  ( N  =  1  \/  N  e.  ( ZZ>= `  2 )
) )
20 fveq2 5720 . . . . . . . . . . . . . . . 16  |-  ( N  =  1  ->  ( ! `  N )  =  ( ! ` 
1 ) )
21 fac1 11562 . . . . . . . . . . . . . . . 16  |-  ( ! `
 1 )  =  1
2220, 21syl6eq 2483 . . . . . . . . . . . . . . 15  |-  ( N  =  1  ->  ( ! `  N )  =  1 )
2322oveq1d 6088 . . . . . . . . . . . . . 14  |-  ( N  =  1  ->  (
( ! `  N
)  /  _e )  =  ( 1  /  _e ) )
24 fveq2 5720 . . . . . . . . . . . . . . 15  |-  ( N  =  1  ->  ( S `  N )  =  ( S ` 
1 ) )
252, 3subfac1 24856 . . . . . . . . . . . . . . 15  |-  ( S `
 1 )  =  0
2624, 25syl6eq 2483 . . . . . . . . . . . . . 14  |-  ( N  =  1  ->  ( S `  N )  =  0 )
2723, 26oveq12d 6091 . . . . . . . . . . . . 13  |-  ( N  =  1  ->  (
( ( ! `  N )  /  _e )  -  ( S `  N ) )  =  ( ( 1  /  _e )  -  0
) )
28 rpreccl 10627 . . . . . . . . . . . . . . . . 17  |-  ( _e  e.  RR+  ->  ( 1  /  _e )  e.  RR+ )
2912, 28ax-mp 8 . . . . . . . . . . . . . . . 16  |-  ( 1  /  _e )  e.  RR+
30 rpre 10610 . . . . . . . . . . . . . . . 16  |-  ( ( 1  /  _e )  e.  RR+  ->  ( 1  /  _e )  e.  RR )
3129, 30ax-mp 8 . . . . . . . . . . . . . . 15  |-  ( 1  /  _e )  e.  RR
3231recni 9094 . . . . . . . . . . . . . 14  |-  ( 1  /  _e )  e.  CC
3332subid1i 9364 . . . . . . . . . . . . 13  |-  ( ( 1  /  _e )  -  0 )  =  ( 1  /  _e )
3427, 33syl6eq 2483 . . . . . . . . . . . 12  |-  ( N  =  1  ->  (
( ( ! `  N )  /  _e )  -  ( S `  N ) )  =  ( 1  /  _e ) )
3534fveq2d 5724 . . . . . . . . . . 11  |-  ( N  =  1  ->  ( abs `  ( ( ( ! `  N )  /  _e )  -  ( S `  N ) ) )  =  ( abs `  ( 1  /  _e ) ) )
36 rpge0 10616 . . . . . . . . . . . . 13  |-  ( ( 1  /  _e )  e.  RR+  ->  0  <_ 
( 1  /  _e ) )
3729, 36ax-mp 8 . . . . . . . . . . . 12  |-  0  <_  ( 1  /  _e )
38 absid 12093 . . . . . . . . . . . 12  |-  ( ( ( 1  /  _e )  e.  RR  /\  0  <_  ( 1  /  _e ) )  ->  ( abs `  ( 1  /  _e ) )  =  ( 1  /  _e ) )
3931, 37, 38mp2an 654 . . . . . . . . . . 11  |-  ( abs `  ( 1  /  _e ) )  =  ( 1  /  _e )
4035, 39syl6eq 2483 . . . . . . . . . 10  |-  ( N  =  1  ->  ( abs `  ( ( ( ! `  N )  /  _e )  -  ( S `  N ) ) )  =  ( 1  /  _e ) )
41 egt2lt3 12797 . . . . . . . . . . . 12  |-  ( 2  <  _e  /\  _e  <  3 )
4241simpli 445 . . . . . . . . . . 11  |-  2  <  _e
43 2re 10061 . . . . . . . . . . . 12  |-  2  e.  RR
44 ere 12683 . . . . . . . . . . . 12  |-  _e  e.  RR
45 2pos 10074 . . . . . . . . . . . 12  |-  0  <  2
46 epos 12798 . . . . . . . . . . . 12  |-  0  <  _e
4743, 44, 45, 46ltrecii 9919 . . . . . . . . . . 11  |-  ( 2  <  _e  <->  ( 1  /  _e )  < 
( 1  /  2
) )
4842, 47mpbi 200 . . . . . . . . . 10  |-  ( 1  /  _e )  < 
( 1  /  2
)
4940, 48syl6eqbr 4241 . . . . . . . . 9  |-  ( N  =  1  ->  ( abs `  ( ( ( ! `  N )  /  _e )  -  ( S `  N ) ) )  <  (
1  /  2 ) )
50 eluz2b2 10540 . . . . . . . . . . . . 13  |-  ( N  e.  ( ZZ>= `  2
)  <->  ( N  e.  NN  /\  1  < 
N ) )
5150simplbi 447 . . . . . . . . . . . 12  |-  ( N  e.  ( ZZ>= `  2
)  ->  N  e.  NN )
5214, 8resubcld 9457 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  (
( ( ! `  N )  /  _e )  -  ( S `  N ) )  e.  RR )
5352recnd 9106 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
( ( ! `  N )  /  _e )  -  ( S `  N ) )  e.  CC )
5451, 53syl 16 . . . . . . . . . . 11  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( (
( ! `  N
)  /  _e )  -  ( S `  N ) )  e.  CC )
5554abscld 12230 . . . . . . . . . 10  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( abs `  ( ( ( ! `
 N )  /  _e )  -  ( S `  N )
) )  e.  RR )
5651nnrecred 10037 . . . . . . . . . 10  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( 1  /  N )  e.  RR )
5716a1i 11 . . . . . . . . . 10  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( 1  /  2 )  e.  RR )
582, 3subfaclim 24866 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  ( abs `  ( ( ( ! `  N )  /  _e )  -  ( S `  N ) ) )  <  (
1  /  N ) )
5951, 58syl 16 . . . . . . . . . 10  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( abs `  ( ( ( ! `
 N )  /  _e )  -  ( S `  N )
) )  <  (
1  /  N ) )
60 eluzle 10490 . . . . . . . . . . 11  |-  ( N  e.  ( ZZ>= `  2
)  ->  2  <_  N )
61 nnre 9999 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  N  e.  RR )
62 nngt0 10021 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  0  <  N )
63 lerec 9884 . . . . . . . . . . . . . 14  |-  ( ( ( 2  e.  RR  /\  0  <  2 )  /\  ( N  e.  RR  /\  0  < 
N ) )  -> 
( 2  <_  N  <->  ( 1  /  N )  <_  ( 1  / 
2 ) ) )
6443, 45, 63mpanl12 664 . . . . . . . . . . . . 13  |-  ( ( N  e.  RR  /\  0  <  N )  -> 
( 2  <_  N  <->  ( 1  /  N )  <_  ( 1  / 
2 ) ) )
6561, 62, 64syl2anc 643 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
2  <_  N  <->  ( 1  /  N )  <_ 
( 1  /  2
) ) )
6651, 65syl 16 . . . . . . . . . . 11  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( 2  <_  N  <->  ( 1  /  N )  <_ 
( 1  /  2
) ) )
6760, 66mpbid 202 . . . . . . . . . 10  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( 1  /  N )  <_ 
( 1  /  2
) )
6855, 56, 57, 59, 67ltletrd 9222 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( abs `  ( ( ( ! `
 N )  /  _e )  -  ( S `  N )
) )  <  (
1  /  2 ) )
6949, 68jaoi 369 . . . . . . . 8  |-  ( ( N  =  1  \/  N  e.  ( ZZ>= ` 
2 ) )  -> 
( abs `  (
( ( ! `  N )  /  _e )  -  ( S `  N ) ) )  <  ( 1  / 
2 ) )
7019, 69sylbi 188 . . . . . . 7  |-  ( N  e.  NN  ->  ( abs `  ( ( ( ! `  N )  /  _e )  -  ( S `  N ) ) )  <  (
1  /  2 ) )
7116a1i 11 . . . . . . . 8  |-  ( N  e.  NN  ->  (
1  /  2 )  e.  RR )
7214, 8, 71absdifltd 12228 . . . . . . 7  |-  ( N  e.  NN  ->  (
( abs `  (
( ( ! `  N )  /  _e )  -  ( S `  N ) ) )  <  ( 1  / 
2 )  <->  ( (
( S `  N
)  -  ( 1  /  2 ) )  <  ( ( ! `
 N )  /  _e )  /\  (
( ! `  N
)  /  _e )  <  ( ( S `
 N )  +  ( 1  /  2
) ) ) ) )
7370, 72mpbid 202 . . . . . 6  |-  ( N  e.  NN  ->  (
( ( S `  N )  -  (
1  /  2 ) )  <  ( ( ! `  N )  /  _e )  /\  ( ( ! `  N )  /  _e )  <  ( ( S `
 N )  +  ( 1  /  2
) ) ) )
7473simpld 446 . . . . 5  |-  ( N  e.  NN  ->  (
( S `  N
)  -  ( 1  /  2 ) )  <  ( ( ! `
 N )  /  _e ) )
758, 71, 14ltsubaddd 9614 . . . . 5  |-  ( N  e.  NN  ->  (
( ( S `  N )  -  (
1  /  2 ) )  <  ( ( ! `  N )  /  _e )  <->  ( S `  N )  <  (
( ( ! `  N )  /  _e )  +  ( 1  /  2 ) ) ) )
7674, 75mpbid 202 . . . 4  |-  ( N  e.  NN  ->  ( S `  N )  <  ( ( ( ! `
 N )  /  _e )  +  (
1  /  2 ) ) )
778, 18, 76ltled 9213 . . 3  |-  ( N  e.  NN  ->  ( S `  N )  <_  ( ( ( ! `
 N )  /  _e )  +  (
1  /  2 ) ) )
78 readdcl 9065 . . . . . 6  |-  ( ( ( S `  N
)  e.  RR  /\  ( 1  /  2
)  e.  RR )  ->  ( ( S `
 N )  +  ( 1  /  2
) )  e.  RR )
798, 16, 78sylancl 644 . . . . 5  |-  ( N  e.  NN  ->  (
( S `  N
)  +  ( 1  /  2 ) )  e.  RR )
8073simprd 450 . . . . 5  |-  ( N  e.  NN  ->  (
( ! `  N
)  /  _e )  <  ( ( S `
 N )  +  ( 1  /  2
) ) )
8114, 79, 71, 80ltadd1dd 9629 . . . 4  |-  ( N  e.  NN  ->  (
( ( ! `  N )  /  _e )  +  ( 1  /  2 ) )  <  ( ( ( S `  N )  +  ( 1  / 
2 ) )  +  ( 1  /  2
) ) )
828recnd 9106 . . . . . 6  |-  ( N  e.  NN  ->  ( S `  N )  e.  CC )
8371recnd 9106 . . . . . 6  |-  ( N  e.  NN  ->  (
1  /  2 )  e.  CC )
8482, 83, 83addassd 9102 . . . . 5  |-  ( N  e.  NN  ->  (
( ( S `  N )  +  ( 1  /  2 ) )  +  ( 1  /  2 ) )  =  ( ( S `
 N )  +  ( ( 1  / 
2 )  +  ( 1  /  2 ) ) ) )
85 ax-1cn 9040 . . . . . . 7  |-  1  e.  CC
86 2halves 10188 . . . . . . 7  |-  ( 1  e.  CC  ->  (
( 1  /  2
)  +  ( 1  /  2 ) )  =  1 )
8785, 86ax-mp 8 . . . . . 6  |-  ( ( 1  /  2 )  +  ( 1  / 
2 ) )  =  1
8887oveq2i 6084 . . . . 5  |-  ( ( S `  N )  +  ( ( 1  /  2 )  +  ( 1  /  2
) ) )  =  ( ( S `  N )  +  1 )
8984, 88syl6eq 2483 . . . 4  |-  ( N  e.  NN  ->  (
( ( S `  N )  +  ( 1  /  2 ) )  +  ( 1  /  2 ) )  =  ( ( S `
 N )  +  1 ) )
9081, 89breqtrd 4228 . . 3  |-  ( N  e.  NN  ->  (
( ( ! `  N )  /  _e )  +  ( 1  /  2 ) )  <  ( ( S `
 N )  +  1 ) )
91 flbi 11215 . . . 4  |-  ( ( ( ( ( ! `
 N )  /  _e )  +  (
1  /  2 ) )  e.  RR  /\  ( S `  N )  e.  ZZ )  -> 
( ( |_ `  ( ( ( ! `
 N )  /  _e )  +  (
1  /  2 ) ) )  =  ( S `  N )  <-> 
( ( S `  N )  <_  (
( ( ! `  N )  /  _e )  +  ( 1  /  2 ) )  /\  ( ( ( ! `  N )  /  _e )  +  ( 1  /  2
) )  <  (
( S `  N
)  +  1 ) ) ) )
9218, 7, 91syl2anc 643 . . 3  |-  ( N  e.  NN  ->  (
( |_ `  (
( ( ! `  N )  /  _e )  +  ( 1  /  2 ) ) )  =  ( S `
 N )  <->  ( ( S `  N )  <_  ( ( ( ! `
 N )  /  _e )  +  (
1  /  2 ) )  /\  ( ( ( ! `  N
)  /  _e )  +  ( 1  / 
2 ) )  < 
( ( S `  N )  +  1 ) ) ) )
9377, 90, 92mpbir2and 889 . 2  |-  ( N  e.  NN  ->  ( |_ `  ( ( ( ! `  N )  /  _e )  +  ( 1  /  2
) ) )  =  ( S `  N
) )
9493eqcomd 2440 1  |-  ( N  e.  NN  ->  ( S `  N )  =  ( |_ `  ( ( ( ! `
 N )  /  _e )  +  (
1  /  2 ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    = wceq 1652    e. wcel 1725   {cab 2421    =/= wne 2598   A.wral 2697   class class class wbr 4204    e. cmpt 4258   -1-1-onto->wf1o 5445   ` cfv 5446  (class class class)co 6073   Fincfn 7101   CCcc 8980   RRcr 8981   0cc0 8982   1c1 8983    + caddc 8985    < clt 9112    <_ cle 9113    - cmin 9283    / cdiv 9669   NNcn 9992   2c2 10041   3c3 10042   NN0cn0 10213   ZZcz 10274   ZZ>=cuz 10480   RR+crp 10604   ...cfz 11035   |_cfl 11193   !cfa 11558   #chash 11610   abscabs 12031   _eceu 12657
This theorem is referenced by:  derangfmla  24868
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7588  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060  ax-addf 9061  ax-mulf 9062
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-isom 5455  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-2o 6717  df-oadd 6720  df-er 6897  df-map 7012  df-pm 7013  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-sup 7438  df-oi 7471  df-card 7818  df-cda 8040  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-2 10050  df-3 10051  df-4 10052  df-n0 10214  df-z 10275  df-uz 10481  df-q 10567  df-rp 10605  df-ico 10914  df-fz 11036  df-fzo 11128  df-fl 11194  df-seq 11316  df-exp 11375  df-fac 11559  df-bc 11586  df-hash 11611  df-shft 11874  df-cj 11896  df-re 11897  df-im 11898  df-sqr 12032  df-abs 12033  df-limsup 12257  df-clim 12274  df-rlim 12275  df-sum 12472  df-ef 12662  df-e 12663
  Copyright terms: Public domain W3C validator