MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgdisj1 Unicode version

Theorem subgdisj1 15000
Description: Vectors belonging to disjoint commuting subgroups are uniquely determined by their sum. (Contributed by NM, 2-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
subgdisj.p  |-  .+  =  ( +g  `  G )
subgdisj.o  |-  .0.  =  ( 0g `  G )
subgdisj.z  |-  Z  =  (Cntz `  G )
subgdisj.t  |-  ( ph  ->  T  e.  (SubGrp `  G ) )
subgdisj.u  |-  ( ph  ->  U  e.  (SubGrp `  G ) )
subgdisj.i  |-  ( ph  ->  ( T  i^i  U
)  =  {  .0.  } )
subgdisj.s  |-  ( ph  ->  T  C_  ( Z `  U ) )
subgdisj.a  |-  ( ph  ->  A  e.  T )
subgdisj.c  |-  ( ph  ->  C  e.  T )
subgdisj.b  |-  ( ph  ->  B  e.  U )
subgdisj.d  |-  ( ph  ->  D  e.  U )
subgdisj.j  |-  ( ph  ->  ( A  .+  B
)  =  ( C 
.+  D ) )
Assertion
Ref Expression
subgdisj1  |-  ( ph  ->  A  =  C )

Proof of Theorem subgdisj1
StepHypRef Expression
1 subgdisj.t . . . . . 6  |-  ( ph  ->  T  e.  (SubGrp `  G ) )
2 subgdisj.a . . . . . 6  |-  ( ph  ->  A  e.  T )
3 subgdisj.c . . . . . 6  |-  ( ph  ->  C  e.  T )
4 eqid 2283 . . . . . . 7  |-  ( -g `  G )  =  (
-g `  G )
54subgsubcl 14632 . . . . . 6  |-  ( ( T  e.  (SubGrp `  G )  /\  A  e.  T  /\  C  e.  T )  ->  ( A ( -g `  G
) C )  e.  T )
61, 2, 3, 5syl3anc 1182 . . . . 5  |-  ( ph  ->  ( A ( -g `  G ) C )  e.  T )
7 subgdisj.j . . . . . . . . 9  |-  ( ph  ->  ( A  .+  B
)  =  ( C 
.+  D ) )
8 subgdisj.s . . . . . . . . . . 11  |-  ( ph  ->  T  C_  ( Z `  U ) )
98, 3sseldd 3181 . . . . . . . . . 10  |-  ( ph  ->  C  e.  ( Z `
 U ) )
10 subgdisj.b . . . . . . . . . 10  |-  ( ph  ->  B  e.  U )
11 subgdisj.p . . . . . . . . . . 11  |-  .+  =  ( +g  `  G )
12 subgdisj.z . . . . . . . . . . 11  |-  Z  =  (Cntz `  G )
1311, 12cntzi 14805 . . . . . . . . . 10  |-  ( ( C  e.  ( Z `
 U )  /\  B  e.  U )  ->  ( C  .+  B
)  =  ( B 
.+  C ) )
149, 10, 13syl2anc 642 . . . . . . . . 9  |-  ( ph  ->  ( C  .+  B
)  =  ( B 
.+  C ) )
157, 14oveq12d 5876 . . . . . . . 8  |-  ( ph  ->  ( ( A  .+  B ) ( -g `  G ) ( C 
.+  B ) )  =  ( ( C 
.+  D ) (
-g `  G )
( B  .+  C
) ) )
16 subgrcl 14626 . . . . . . . . . 10  |-  ( T  e.  (SubGrp `  G
)  ->  G  e.  Grp )
171, 16syl 15 . . . . . . . . 9  |-  ( ph  ->  G  e.  Grp )
18 eqid 2283 . . . . . . . . . . . . 13  |-  ( Base `  G )  =  (
Base `  G )
1918subgss 14622 . . . . . . . . . . . 12  |-  ( T  e.  (SubGrp `  G
)  ->  T  C_  ( Base `  G ) )
201, 19syl 15 . . . . . . . . . . 11  |-  ( ph  ->  T  C_  ( Base `  G ) )
2120, 2sseldd 3181 . . . . . . . . . 10  |-  ( ph  ->  A  e.  ( Base `  G ) )
22 subgdisj.u . . . . . . . . . . . 12  |-  ( ph  ->  U  e.  (SubGrp `  G ) )
2318subgss 14622 . . . . . . . . . . . 12  |-  ( U  e.  (SubGrp `  G
)  ->  U  C_  ( Base `  G ) )
2422, 23syl 15 . . . . . . . . . . 11  |-  ( ph  ->  U  C_  ( Base `  G ) )
2524, 10sseldd 3181 . . . . . . . . . 10  |-  ( ph  ->  B  e.  ( Base `  G ) )
2618, 11grpcl 14495 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  A  e.  ( Base `  G )  /\  B  e.  ( Base `  G
) )  ->  ( A  .+  B )  e.  ( Base `  G
) )
2717, 21, 25, 26syl3anc 1182 . . . . . . . . 9  |-  ( ph  ->  ( A  .+  B
)  e.  ( Base `  G ) )
2820, 3sseldd 3181 . . . . . . . . 9  |-  ( ph  ->  C  e.  ( Base `  G ) )
2918, 11, 4grpsubsub4 14558 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  ( ( A  .+  B )  e.  (
Base `  G )  /\  B  e.  ( Base `  G )  /\  C  e.  ( Base `  G ) ) )  ->  ( ( ( A  .+  B ) ( -g `  G
) B ) (
-g `  G ) C )  =  ( ( A  .+  B
) ( -g `  G
) ( C  .+  B ) ) )
3017, 27, 25, 28, 29syl13anc 1184 . . . . . . . 8  |-  ( ph  ->  ( ( ( A 
.+  B ) (
-g `  G ) B ) ( -g `  G ) C )  =  ( ( A 
.+  B ) (
-g `  G )
( C  .+  B
) ) )
317, 27eqeltrrd 2358 . . . . . . . . 9  |-  ( ph  ->  ( C  .+  D
)  e.  ( Base `  G ) )
3218, 11, 4grpsubsub4 14558 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  ( ( C  .+  D )  e.  (
Base `  G )  /\  C  e.  ( Base `  G )  /\  B  e.  ( Base `  G ) ) )  ->  ( ( ( C  .+  D ) ( -g `  G
) C ) (
-g `  G ) B )  =  ( ( C  .+  D
) ( -g `  G
) ( B  .+  C ) ) )
3317, 31, 28, 25, 32syl13anc 1184 . . . . . . . 8  |-  ( ph  ->  ( ( ( C 
.+  D ) (
-g `  G ) C ) ( -g `  G ) B )  =  ( ( C 
.+  D ) (
-g `  G )
( B  .+  C
) ) )
3415, 30, 333eqtr4d 2325 . . . . . . 7  |-  ( ph  ->  ( ( ( A 
.+  B ) (
-g `  G ) B ) ( -g `  G ) C )  =  ( ( ( C  .+  D ) ( -g `  G
) C ) (
-g `  G ) B ) )
3518, 11, 4grppncan 14556 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  A  e.  ( Base `  G )  /\  B  e.  ( Base `  G
) )  ->  (
( A  .+  B
) ( -g `  G
) B )  =  A )
3617, 21, 25, 35syl3anc 1182 . . . . . . . 8  |-  ( ph  ->  ( ( A  .+  B ) ( -g `  G ) B )  =  A )
3736oveq1d 5873 . . . . . . 7  |-  ( ph  ->  ( ( ( A 
.+  B ) (
-g `  G ) B ) ( -g `  G ) C )  =  ( A (
-g `  G ) C ) )
38 subgdisj.d . . . . . . . . . . 11  |-  ( ph  ->  D  e.  U )
3911, 12cntzi 14805 . . . . . . . . . . 11  |-  ( ( C  e.  ( Z `
 U )  /\  D  e.  U )  ->  ( C  .+  D
)  =  ( D 
.+  C ) )
409, 38, 39syl2anc 642 . . . . . . . . . 10  |-  ( ph  ->  ( C  .+  D
)  =  ( D 
.+  C ) )
4140oveq1d 5873 . . . . . . . . 9  |-  ( ph  ->  ( ( C  .+  D ) ( -g `  G ) C )  =  ( ( D 
.+  C ) (
-g `  G ) C ) )
4224, 38sseldd 3181 . . . . . . . . . 10  |-  ( ph  ->  D  e.  ( Base `  G ) )
4318, 11, 4grppncan 14556 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  D  e.  ( Base `  G )  /\  C  e.  ( Base `  G
) )  ->  (
( D  .+  C
) ( -g `  G
) C )  =  D )
4417, 42, 28, 43syl3anc 1182 . . . . . . . . 9  |-  ( ph  ->  ( ( D  .+  C ) ( -g `  G ) C )  =  D )
4541, 44eqtrd 2315 . . . . . . . 8  |-  ( ph  ->  ( ( C  .+  D ) ( -g `  G ) C )  =  D )
4645oveq1d 5873 . . . . . . 7  |-  ( ph  ->  ( ( ( C 
.+  D ) (
-g `  G ) C ) ( -g `  G ) B )  =  ( D (
-g `  G ) B ) )
4734, 37, 463eqtr3d 2323 . . . . . 6  |-  ( ph  ->  ( A ( -g `  G ) C )  =  ( D (
-g `  G ) B ) )
484subgsubcl 14632 . . . . . . 7  |-  ( ( U  e.  (SubGrp `  G )  /\  D  e.  U  /\  B  e.  U )  ->  ( D ( -g `  G
) B )  e.  U )
4922, 38, 10, 48syl3anc 1182 . . . . . 6  |-  ( ph  ->  ( D ( -g `  G ) B )  e.  U )
5047, 49eqeltrd 2357 . . . . 5  |-  ( ph  ->  ( A ( -g `  G ) C )  e.  U )
51 elin 3358 . . . . 5  |-  ( ( A ( -g `  G
) C )  e.  ( T  i^i  U
)  <->  ( ( A ( -g `  G
) C )  e.  T  /\  ( A ( -g `  G
) C )  e.  U ) )
526, 50, 51sylanbrc 645 . . . 4  |-  ( ph  ->  ( A ( -g `  G ) C )  e.  ( T  i^i  U ) )
53 subgdisj.i . . . 4  |-  ( ph  ->  ( T  i^i  U
)  =  {  .0.  } )
5452, 53eleqtrd 2359 . . 3  |-  ( ph  ->  ( A ( -g `  G ) C )  e.  {  .0.  }
)
55 elsni 3664 . . 3  |-  ( ( A ( -g `  G
) C )  e. 
{  .0.  }  ->  ( A ( -g `  G
) C )  =  .0.  )
5654, 55syl 15 . 2  |-  ( ph  ->  ( A ( -g `  G ) C )  =  .0.  )
57 subgdisj.o . . . 4  |-  .0.  =  ( 0g `  G )
5818, 57, 4grpsubeq0 14552 . . 3  |-  ( ( G  e.  Grp  /\  A  e.  ( Base `  G )  /\  C  e.  ( Base `  G
) )  ->  (
( A ( -g `  G ) C )  =  .0.  <->  A  =  C ) )
5917, 21, 28, 58syl3anc 1182 . 2  |-  ( ph  ->  ( ( A (
-g `  G ) C )  =  .0.  <->  A  =  C ) )
6056, 59mpbid 201 1  |-  ( ph  ->  A  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    = wceq 1623    e. wcel 1684    i^i cin 3151    C_ wss 3152   {csn 3640   ` cfv 5255  (class class class)co 5858   Basecbs 13148   +g cplusg 13208   0gc0g 13400   Grpcgrp 14362   -gcsg 14365  SubGrpcsubg 14615  Cntzccntz 14791
This theorem is referenced by:  subgdisj2  15001  subgdisjb  15002  lvecindp  15891
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-0g 13404  df-mnd 14367  df-grp 14489  df-minusg 14490  df-sbg 14491  df-subg 14618  df-cntz 14793
  Copyright terms: Public domain W3C validator