MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgdisj2 Unicode version

Theorem subgdisj2 15017
Description: Vectors belonging to disjoint subgroups are uniquely determined by their sum. (Contributed by NM, 12-Jul-2014.) (Revised by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
subgdisj.p  |-  .+  =  ( +g  `  G )
subgdisj.o  |-  .0.  =  ( 0g `  G )
subgdisj.z  |-  Z  =  (Cntz `  G )
subgdisj.t  |-  ( ph  ->  T  e.  (SubGrp `  G ) )
subgdisj.u  |-  ( ph  ->  U  e.  (SubGrp `  G ) )
subgdisj.i  |-  ( ph  ->  ( T  i^i  U
)  =  {  .0.  } )
subgdisj.s  |-  ( ph  ->  T  C_  ( Z `  U ) )
subgdisj.a  |-  ( ph  ->  A  e.  T )
subgdisj.c  |-  ( ph  ->  C  e.  T )
subgdisj.b  |-  ( ph  ->  B  e.  U )
subgdisj.d  |-  ( ph  ->  D  e.  U )
subgdisj.j  |-  ( ph  ->  ( A  .+  B
)  =  ( C 
.+  D ) )
Assertion
Ref Expression
subgdisj2  |-  ( ph  ->  B  =  D )

Proof of Theorem subgdisj2
StepHypRef Expression
1 subgdisj.p . 2  |-  .+  =  ( +g  `  G )
2 subgdisj.o . 2  |-  .0.  =  ( 0g `  G )
3 subgdisj.z . 2  |-  Z  =  (Cntz `  G )
4 subgdisj.u . 2  |-  ( ph  ->  U  e.  (SubGrp `  G ) )
5 subgdisj.t . 2  |-  ( ph  ->  T  e.  (SubGrp `  G ) )
6 incom 3374 . . 3  |-  ( T  i^i  U )  =  ( U  i^i  T
)
7 subgdisj.i . . 3  |-  ( ph  ->  ( T  i^i  U
)  =  {  .0.  } )
86, 7syl5eqr 2342 . 2  |-  ( ph  ->  ( U  i^i  T
)  =  {  .0.  } )
9 subgdisj.s . . 3  |-  ( ph  ->  T  C_  ( Z `  U ) )
103, 5, 4, 9cntzrecd 15003 . 2  |-  ( ph  ->  U  C_  ( Z `  T ) )
11 subgdisj.b . 2  |-  ( ph  ->  B  e.  U )
12 subgdisj.d . 2  |-  ( ph  ->  D  e.  U )
13 subgdisj.a . 2  |-  ( ph  ->  A  e.  T )
14 subgdisj.c . 2  |-  ( ph  ->  C  e.  T )
15 subgdisj.j . . 3  |-  ( ph  ->  ( A  .+  B
)  =  ( C 
.+  D ) )
169, 13sseldd 3194 . . . 4  |-  ( ph  ->  A  e.  ( Z `
 U ) )
171, 3cntzi 14821 . . . 4  |-  ( ( A  e.  ( Z `
 U )  /\  B  e.  U )  ->  ( A  .+  B
)  =  ( B 
.+  A ) )
1816, 11, 17syl2anc 642 . . 3  |-  ( ph  ->  ( A  .+  B
)  =  ( B 
.+  A ) )
199, 14sseldd 3194 . . . 4  |-  ( ph  ->  C  e.  ( Z `
 U ) )
201, 3cntzi 14821 . . . 4  |-  ( ( C  e.  ( Z `
 U )  /\  D  e.  U )  ->  ( C  .+  D
)  =  ( D 
.+  C ) )
2119, 12, 20syl2anc 642 . . 3  |-  ( ph  ->  ( C  .+  D
)  =  ( D 
.+  C ) )
2215, 18, 213eqtr3d 2336 . 2  |-  ( ph  ->  ( B  .+  A
)  =  ( D 
.+  C ) )
231, 2, 3, 4, 5, 8, 10, 11, 12, 13, 14, 22subgdisj1 15016 1  |-  ( ph  ->  B  =  D )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1632    e. wcel 1696    i^i cin 3164    C_ wss 3165   {csn 3653   ` cfv 5271  (class class class)co 5874   +g cplusg 13224   0gc0g 13416  SubGrpcsubg 14631  Cntzccntz 14807
This theorem is referenced by:  subgdisjb  15018  lvecindp  15907  lshpsmreu  29921  lshpkrlem5  29926
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-2 9820  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-0g 13420  df-mnd 14383  df-grp 14505  df-minusg 14506  df-sbg 14507  df-subg 14634  df-cntz 14809
  Copyright terms: Public domain W3C validator