MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgdmdprd Unicode version

Theorem subgdmdprd 15555
Description: A direct product in a subgroup. (Contributed by Mario Carneiro, 27-Apr-2016.)
Hypothesis
Ref Expression
subgdprd.1  |-  H  =  ( Gs  A )
Assertion
Ref Expression
subgdmdprd  |-  ( A  e.  (SubGrp `  G
)  ->  ( H dom DProd  S  <->  ( G dom DProd  S  /\  ran  S  C_  ~P A ) ) )

Proof of Theorem subgdmdprd
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reldmdprd 15521 . . . 4  |-  Rel  dom DProd
21brrelex2i 4886 . . 3  |-  ( H dom DProd  S  ->  S  e. 
_V )
32a1i 11 . 2  |-  ( A  e.  (SubGrp `  G
)  ->  ( H dom DProd  S  ->  S  e.  _V ) )
41brrelex2i 4886 . . . 4  |-  ( G dom DProd  S  ->  S  e. 
_V )
54adantr 452 . . 3  |-  ( ( G dom DProd  S  /\  ran  S  C_  ~P A
)  ->  S  e.  _V )
65a1i 11 . 2  |-  ( A  e.  (SubGrp `  G
)  ->  ( ( G dom DProd  S  /\  ran  S  C_ 
~P A )  ->  S  e.  _V )
)
7 ffvelrn 5835 . . . . . . . . . . . . . . . 16  |-  ( ( S : dom  S --> (SubGrp `  H )  /\  x  e.  dom  S )  ->  ( S `  x )  e.  (SubGrp `  H ) )
87ad2ant2lr 729 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  ( x  e.  dom  S  /\  y  e.  ( dom  S  \  {
x } ) ) )  ->  ( S `  x )  e.  (SubGrp `  H ) )
9 eqid 2412 . . . . . . . . . . . . . . . 16  |-  ( Base `  H )  =  (
Base `  H )
109subgss 14908 . . . . . . . . . . . . . . 15  |-  ( ( S `  x )  e.  (SubGrp `  H
)  ->  ( S `  x )  C_  ( Base `  H ) )
118, 10syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  ( x  e.  dom  S  /\  y  e.  ( dom  S  \  {
x } ) ) )  ->  ( S `  x )  C_  ( Base `  H ) )
12 subgdprd.1 . . . . . . . . . . . . . . . 16  |-  H  =  ( Gs  A )
1312subgbas 14911 . . . . . . . . . . . . . . 15  |-  ( A  e.  (SubGrp `  G
)  ->  A  =  ( Base `  H )
)
1413ad2antrr 707 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  ( x  e.  dom  S  /\  y  e.  ( dom  S  \  {
x } ) ) )  ->  A  =  ( Base `  H )
)
1511, 14sseqtr4d 3353 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  ( x  e.  dom  S  /\  y  e.  ( dom  S  \  {
x } ) ) )  ->  ( S `  x )  C_  A
)
1615biantrud 494 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  ( x  e.  dom  S  /\  y  e.  ( dom  S  \  {
x } ) ) )  ->  ( ( S `  x )  C_  ( (Cntz `  G
) `  ( S `  y ) )  <->  ( ( S `  x )  C_  ( (Cntz `  G
) `  ( S `  y ) )  /\  ( S `  x ) 
C_  A ) ) )
17 simpll 731 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  ( x  e.  dom  S  /\  y  e.  ( dom  S  \  {
x } ) ) )  ->  A  e.  (SubGrp `  G ) )
18 simplr 732 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  ( x  e.  dom  S  /\  y  e.  ( dom  S  \  {
x } ) ) )  ->  S : dom  S --> (SubGrp `  H )
)
19 eldifi 3437 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  ( dom  S  \  { x } )  ->  y  e.  dom  S )
2019ad2antll 710 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  ( x  e.  dom  S  /\  y  e.  ( dom  S  \  {
x } ) ) )  ->  y  e.  dom  S )
2118, 20ffvelrnd 5838 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  ( x  e.  dom  S  /\  y  e.  ( dom  S  \  {
x } ) ) )  ->  ( S `  y )  e.  (SubGrp `  H ) )
229subgss 14908 . . . . . . . . . . . . . . . . 17  |-  ( ( S `  y )  e.  (SubGrp `  H
)  ->  ( S `  y )  C_  ( Base `  H ) )
2321, 22syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  ( x  e.  dom  S  /\  y  e.  ( dom  S  \  {
x } ) ) )  ->  ( S `  y )  C_  ( Base `  H ) )
2423, 14sseqtr4d 3353 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  ( x  e.  dom  S  /\  y  e.  ( dom  S  \  {
x } ) ) )  ->  ( S `  y )  C_  A
)
25 eqid 2412 . . . . . . . . . . . . . . . 16  |-  (Cntz `  G )  =  (Cntz `  G )
26 eqid 2412 . . . . . . . . . . . . . . . 16  |-  (Cntz `  H )  =  (Cntz `  H )
2712, 25, 26resscntz 15093 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  (SubGrp `  G )  /\  ( S `  y )  C_  A )  ->  (
(Cntz `  H ) `  ( S `  y
) )  =  ( ( (Cntz `  G
) `  ( S `  y ) )  i^i 
A ) )
2817, 24, 27syl2anc 643 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  ( x  e.  dom  S  /\  y  e.  ( dom  S  \  {
x } ) ) )  ->  ( (Cntz `  H ) `  ( S `  y )
)  =  ( ( (Cntz `  G ) `  ( S `  y
) )  i^i  A
) )
2928sseq2d 3344 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  ( x  e.  dom  S  /\  y  e.  ( dom  S  \  {
x } ) ) )  ->  ( ( S `  x )  C_  ( (Cntz `  H
) `  ( S `  y ) )  <->  ( S `  x )  C_  (
( (Cntz `  G
) `  ( S `  y ) )  i^i 
A ) ) )
30 ssin 3531 . . . . . . . . . . . . 13  |-  ( ( ( S `  x
)  C_  ( (Cntz `  G ) `  ( S `  y )
)  /\  ( S `  x )  C_  A
)  <->  ( S `  x )  C_  (
( (Cntz `  G
) `  ( S `  y ) )  i^i 
A ) )
3129, 30syl6bbr 255 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  ( x  e.  dom  S  /\  y  e.  ( dom  S  \  {
x } ) ) )  ->  ( ( S `  x )  C_  ( (Cntz `  H
) `  ( S `  y ) )  <->  ( ( S `  x )  C_  ( (Cntz `  G
) `  ( S `  y ) )  /\  ( S `  x ) 
C_  A ) ) )
3216, 31bitr4d 248 . . . . . . . . . . 11  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  ( x  e.  dom  S  /\  y  e.  ( dom  S  \  {
x } ) ) )  ->  ( ( S `  x )  C_  ( (Cntz `  G
) `  ( S `  y ) )  <->  ( S `  x )  C_  (
(Cntz `  H ) `  ( S `  y
) ) ) )
3332anassrs 630 . . . . . . . . . 10  |-  ( ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  /\  y  e.  ( dom  S  \  { x } ) )  ->  ( ( S `  x )  C_  ( (Cntz `  G
) `  ( S `  y ) )  <->  ( S `  x )  C_  (
(Cntz `  H ) `  ( S `  y
) ) ) )
3433ralbidva 2690 . . . . . . . . 9  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  ( A. y  e.  ( dom  S  \  { x } ) ( S `  x
)  C_  ( (Cntz `  G ) `  ( S `  y )
)  <->  A. y  e.  ( dom  S  \  {
x } ) ( S `  x ) 
C_  ( (Cntz `  H ) `  ( S `  y )
) ) )
35 subgrcl 14912 . . . . . . . . . . . . . . 15  |-  ( A  e.  (SubGrp `  G
)  ->  G  e.  Grp )
3635ad2antrr 707 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  G  e.  Grp )
37 eqid 2412 . . . . . . . . . . . . . . 15  |-  ( Base `  G )  =  (
Base `  G )
3837subgacs 14938 . . . . . . . . . . . . . 14  |-  ( G  e.  Grp  ->  (SubGrp `  G )  e.  (ACS
`  ( Base `  G
) ) )
39 acsmre 13840 . . . . . . . . . . . . . 14  |-  ( (SubGrp `  G )  e.  (ACS
`  ( Base `  G
) )  ->  (SubGrp `  G )  e.  (Moore `  ( Base `  G
) ) )
4036, 38, 393syl 19 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  (SubGrp `  G )  e.  (Moore `  ( Base `  G ) ) )
4112subggrp 14910 . . . . . . . . . . . . . . . 16  |-  ( A  e.  (SubGrp `  G
)  ->  H  e.  Grp )
4241ad2antrr 707 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  H  e.  Grp )
439subgacs 14938 . . . . . . . . . . . . . . 15  |-  ( H  e.  Grp  ->  (SubGrp `  H )  e.  (ACS
`  ( Base `  H
) ) )
44 acsmre 13840 . . . . . . . . . . . . . . 15  |-  ( (SubGrp `  H )  e.  (ACS
`  ( Base `  H
) )  ->  (SubGrp `  H )  e.  (Moore `  ( Base `  H
) ) )
4542, 43, 443syl 19 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  (SubGrp `  H )  e.  (Moore `  ( Base `  H ) ) )
46 eqid 2412 . . . . . . . . . . . . . 14  |-  (mrCls `  (SubGrp `  H ) )  =  (mrCls `  (SubGrp `  H ) )
47 imassrn 5183 . . . . . . . . . . . . . . . . 17  |-  ( S
" ( dom  S  \  { x } ) )  C_  ran  S
48 frn 5564 . . . . . . . . . . . . . . . . . 18  |-  ( S : dom  S --> (SubGrp `  H )  ->  ran  S 
C_  (SubGrp `  H )
)
4948ad2antlr 708 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  ran  S  C_  (SubGrp `  H ) )
5047, 49syl5ss 3327 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  ( S "
( dom  S  \  {
x } ) ) 
C_  (SubGrp `  H )
)
51 mresspw 13780 . . . . . . . . . . . . . . . . 17  |-  ( (SubGrp `  H )  e.  (Moore `  ( Base `  H
) )  ->  (SubGrp `  H )  C_  ~P ( Base `  H )
)
5245, 51syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  (SubGrp `  H )  C_ 
~P ( Base `  H
) )
5350, 52sstrd 3326 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  ( S "
( dom  S  \  {
x } ) ) 
C_  ~P ( Base `  H
) )
54 sspwuni 4144 . . . . . . . . . . . . . . 15  |-  ( ( S " ( dom 
S  \  { x } ) )  C_  ~P ( Base `  H
)  <->  U. ( S "
( dom  S  \  {
x } ) ) 
C_  ( Base `  H
) )
5553, 54sylib 189 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  U. ( S "
( dom  S  \  {
x } ) ) 
C_  ( Base `  H
) )
5645, 46, 55mrcssidd 13813 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  U. ( S "
( dom  S  \  {
x } ) ) 
C_  ( (mrCls `  (SubGrp `  H ) ) `
 U. ( S
" ( dom  S  \  { x } ) ) ) )
5746mrccl 13799 . . . . . . . . . . . . . . . 16  |-  ( ( (SubGrp `  H )  e.  (Moore `  ( Base `  H ) )  /\  U. ( S " ( dom  S  \  { x } ) )  C_  ( Base `  H )
)  ->  ( (mrCls `  (SubGrp `  H )
) `  U. ( S
" ( dom  S  \  { x } ) ) )  e.  (SubGrp `  H ) )
5845, 55, 57syl2anc 643 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  ( (mrCls `  (SubGrp `  H ) ) `
 U. ( S
" ( dom  S  \  { x } ) ) )  e.  (SubGrp `  H ) )
5912subsubg 14926 . . . . . . . . . . . . . . . 16  |-  ( A  e.  (SubGrp `  G
)  ->  ( (
(mrCls `  (SubGrp `  H
) ) `  U. ( S " ( dom 
S  \  { x } ) ) )  e.  (SubGrp `  H
)  <->  ( ( (mrCls `  (SubGrp `  H )
) `  U. ( S
" ( dom  S  \  { x } ) ) )  e.  (SubGrp `  G )  /\  (
(mrCls `  (SubGrp `  H
) ) `  U. ( S " ( dom 
S  \  { x } ) ) ) 
C_  A ) ) )
6059ad2antrr 707 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  ( ( (mrCls `  (SubGrp `  H )
) `  U. ( S
" ( dom  S  \  { x } ) ) )  e.  (SubGrp `  H )  <->  ( (
(mrCls `  (SubGrp `  H
) ) `  U. ( S " ( dom 
S  \  { x } ) ) )  e.  (SubGrp `  G
)  /\  ( (mrCls `  (SubGrp `  H )
) `  U. ( S
" ( dom  S  \  { x } ) ) )  C_  A
) ) )
6158, 60mpbid 202 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  ( ( (mrCls `  (SubGrp `  H )
) `  U. ( S
" ( dom  S  \  { x } ) ) )  e.  (SubGrp `  G )  /\  (
(mrCls `  (SubGrp `  H
) ) `  U. ( S " ( dom 
S  \  { x } ) ) ) 
C_  A ) )
6261simpld 446 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  ( (mrCls `  (SubGrp `  H ) ) `
 U. ( S
" ( dom  S  \  { x } ) ) )  e.  (SubGrp `  G ) )
63 eqid 2412 . . . . . . . . . . . . . 14  |-  (mrCls `  (SubGrp `  G ) )  =  (mrCls `  (SubGrp `  G ) )
6463mrcsscl 13808 . . . . . . . . . . . . 13  |-  ( ( (SubGrp `  G )  e.  (Moore `  ( Base `  G ) )  /\  U. ( S " ( dom  S  \  { x } ) )  C_  ( (mrCls `  (SubGrp `  H
) ) `  U. ( S " ( dom 
S  \  { x } ) ) )  /\  ( (mrCls `  (SubGrp `  H ) ) `
 U. ( S
" ( dom  S  \  { x } ) ) )  e.  (SubGrp `  G ) )  -> 
( (mrCls `  (SubGrp `  G ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) 
C_  ( (mrCls `  (SubGrp `  H ) ) `
 U. ( S
" ( dom  S  \  { x } ) ) ) )
6540, 56, 62, 64syl3anc 1184 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  ( (mrCls `  (SubGrp `  G ) ) `
 U. ( S
" ( dom  S  \  { x } ) ) )  C_  (
(mrCls `  (SubGrp `  H
) ) `  U. ( S " ( dom 
S  \  { x } ) ) ) )
6613ad2antrr 707 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  A  =  (
Base `  H )
)
6755, 66sseqtr4d 3353 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  U. ( S "
( dom  S  \  {
x } ) ) 
C_  A )
6837subgss 14908 . . . . . . . . . . . . . . . 16  |-  ( A  e.  (SubGrp `  G
)  ->  A  C_  ( Base `  G ) )
6968ad2antrr 707 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  A  C_  ( Base `  G ) )
7067, 69sstrd 3326 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  U. ( S "
( dom  S  \  {
x } ) ) 
C_  ( Base `  G
) )
7140, 63, 70mrcssidd 13813 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  U. ( S "
( dom  S  \  {
x } ) ) 
C_  ( (mrCls `  (SubGrp `  G ) ) `
 U. ( S
" ( dom  S  \  { x } ) ) ) )
7263mrccl 13799 . . . . . . . . . . . . . . 15  |-  ( ( (SubGrp `  G )  e.  (Moore `  ( Base `  G ) )  /\  U. ( S " ( dom  S  \  { x } ) )  C_  ( Base `  G )
)  ->  ( (mrCls `  (SubGrp `  G )
) `  U. ( S
" ( dom  S  \  { x } ) ) )  e.  (SubGrp `  G ) )
7340, 70, 72syl2anc 643 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  ( (mrCls `  (SubGrp `  G ) ) `
 U. ( S
" ( dom  S  \  { x } ) ) )  e.  (SubGrp `  G ) )
74 simpll 731 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  A  e.  (SubGrp `  G ) )
7563mrcsscl 13808 . . . . . . . . . . . . . . 15  |-  ( ( (SubGrp `  G )  e.  (Moore `  ( Base `  G ) )  /\  U. ( S " ( dom  S  \  { x } ) )  C_  A  /\  A  e.  (SubGrp `  G ) )  -> 
( (mrCls `  (SubGrp `  G ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) 
C_  A )
7640, 67, 74, 75syl3anc 1184 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  ( (mrCls `  (SubGrp `  G ) ) `
 U. ( S
" ( dom  S  \  { x } ) ) )  C_  A
)
7712subsubg 14926 . . . . . . . . . . . . . . 15  |-  ( A  e.  (SubGrp `  G
)  ->  ( (
(mrCls `  (SubGrp `  G
) ) `  U. ( S " ( dom 
S  \  { x } ) ) )  e.  (SubGrp `  H
)  <->  ( ( (mrCls `  (SubGrp `  G )
) `  U. ( S
" ( dom  S  \  { x } ) ) )  e.  (SubGrp `  G )  /\  (
(mrCls `  (SubGrp `  G
) ) `  U. ( S " ( dom 
S  \  { x } ) ) ) 
C_  A ) ) )
7877ad2antrr 707 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  ( ( (mrCls `  (SubGrp `  G )
) `  U. ( S
" ( dom  S  \  { x } ) ) )  e.  (SubGrp `  H )  <->  ( (
(mrCls `  (SubGrp `  G
) ) `  U. ( S " ( dom 
S  \  { x } ) ) )  e.  (SubGrp `  G
)  /\  ( (mrCls `  (SubGrp `  G )
) `  U. ( S
" ( dom  S  \  { x } ) ) )  C_  A
) ) )
7973, 76, 78mpbir2and 889 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  ( (mrCls `  (SubGrp `  G ) ) `
 U. ( S
" ( dom  S  \  { x } ) ) )  e.  (SubGrp `  H ) )
8046mrcsscl 13808 . . . . . . . . . . . . 13  |-  ( ( (SubGrp `  H )  e.  (Moore `  ( Base `  H ) )  /\  U. ( S " ( dom  S  \  { x } ) )  C_  ( (mrCls `  (SubGrp `  G
) ) `  U. ( S " ( dom 
S  \  { x } ) ) )  /\  ( (mrCls `  (SubGrp `  G ) ) `
 U. ( S
" ( dom  S  \  { x } ) ) )  e.  (SubGrp `  H ) )  -> 
( (mrCls `  (SubGrp `  H ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) 
C_  ( (mrCls `  (SubGrp `  G ) ) `
 U. ( S
" ( dom  S  \  { x } ) ) ) )
8145, 71, 79, 80syl3anc 1184 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  ( (mrCls `  (SubGrp `  H ) ) `
 U. ( S
" ( dom  S  \  { x } ) ) )  C_  (
(mrCls `  (SubGrp `  G
) ) `  U. ( S " ( dom 
S  \  { x } ) ) ) )
8265, 81eqssd 3333 . . . . . . . . . . 11  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  ( (mrCls `  (SubGrp `  G ) ) `
 U. ( S
" ( dom  S  \  { x } ) ) )  =  ( (mrCls `  (SubGrp `  H
) ) `  U. ( S " ( dom 
S  \  { x } ) ) ) )
8382ineq2d 3510 . . . . . . . . . 10  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  ( ( S `
 x )  i^i  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  H ) ) `
 U. ( S
" ( dom  S  \  { x } ) ) ) ) )
84 eqid 2412 . . . . . . . . . . . . 13  |-  ( 0g
`  G )  =  ( 0g `  G
)
8512, 84subg0 14913 . . . . . . . . . . . 12  |-  ( A  e.  (SubGrp `  G
)  ->  ( 0g `  G )  =  ( 0g `  H ) )
8685ad2antrr 707 . . . . . . . . . . 11  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  ( 0g `  G )  =  ( 0g `  H ) )
8786sneqd 3795 . . . . . . . . . 10  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  { ( 0g
`  G ) }  =  { ( 0g
`  H ) } )
8883, 87eqeq12d 2426 . . . . . . . . 9  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  ( ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  G ) ) `
 U. ( S
" ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  G ) }  <->  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  H ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  H ) } ) )
8934, 88anbi12d 692 . . . . . . . 8  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  ( ( A. y  e.  ( dom  S 
\  { x }
) ( S `  x )  C_  (
(Cntz `  G ) `  ( S `  y
) )  /\  (
( S `  x
)  i^i  ( (mrCls `  (SubGrp `  G )
) `  U. ( S
" ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  G ) } )  <-> 
( A. y  e.  ( dom  S  \  { x } ) ( S `  x
)  C_  ( (Cntz `  H ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  H ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  H ) } ) ) )
9089ralbidva 2690 . . . . . . 7  |-  ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  -> 
( A. x  e. 
dom  S ( A. y  e.  ( dom  S 
\  { x }
) ( S `  x )  C_  (
(Cntz `  G ) `  ( S `  y
) )  /\  (
( S `  x
)  i^i  ( (mrCls `  (SubGrp `  G )
) `  U. ( S
" ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  G ) } )  <->  A. x  e.  dom  S ( A. y  e.  ( dom  S  \  { x } ) ( S `  x
)  C_  ( (Cntz `  H ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  H ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  H ) } ) ) )
9190pm5.32da 623 . . . . . 6  |-  ( A  e.  (SubGrp `  G
)  ->  ( ( S : dom  S --> (SubGrp `  H )  /\  A. x  e.  dom  S ( A. y  e.  ( dom  S  \  {
x } ) ( S `  x ) 
C_  ( (Cntz `  G ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  G ) } ) )  <->  ( S : dom  S --> (SubGrp `  H )  /\  A. x  e.  dom  S ( A. y  e.  ( dom  S  \  {
x } ) ( S `  x ) 
C_  ( (Cntz `  H ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  H ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  H ) } ) ) ) )
9212subsubg 14926 . . . . . . . . . . . . 13  |-  ( A  e.  (SubGrp `  G
)  ->  ( x  e.  (SubGrp `  H )  <->  ( x  e.  (SubGrp `  G )  /\  x  C_  A ) ) )
93 elin 3498 . . . . . . . . . . . . . 14  |-  ( x  e.  ( (SubGrp `  G )  i^i  ~P A )  <->  ( x  e.  (SubGrp `  G )  /\  x  e.  ~P A ) )
94 vex 2927 . . . . . . . . . . . . . . . 16  |-  x  e. 
_V
9594elpw 3773 . . . . . . . . . . . . . . 15  |-  ( x  e.  ~P A  <->  x  C_  A
)
9695anbi2i 676 . . . . . . . . . . . . . 14  |-  ( ( x  e.  (SubGrp `  G )  /\  x  e.  ~P A )  <->  ( x  e.  (SubGrp `  G )  /\  x  C_  A ) )
9793, 96bitri 241 . . . . . . . . . . . . 13  |-  ( x  e.  ( (SubGrp `  G )  i^i  ~P A )  <->  ( x  e.  (SubGrp `  G )  /\  x  C_  A ) )
9892, 97syl6bbr 255 . . . . . . . . . . . 12  |-  ( A  e.  (SubGrp `  G
)  ->  ( x  e.  (SubGrp `  H )  <->  x  e.  ( (SubGrp `  G )  i^i  ~P A ) ) )
9998eqrdv 2410 . . . . . . . . . . 11  |-  ( A  e.  (SubGrp `  G
)  ->  (SubGrp `  H
)  =  ( (SubGrp `  G )  i^i  ~P A ) )
10099sseq2d 3344 . . . . . . . . . 10  |-  ( A  e.  (SubGrp `  G
)  ->  ( ran  S 
C_  (SubGrp `  H )  <->  ran 
S  C_  ( (SubGrp `  G )  i^i  ~P A ) ) )
101 ssin 3531 . . . . . . . . . 10  |-  ( ( ran  S  C_  (SubGrp `  G )  /\  ran  S 
C_  ~P A )  <->  ran  S  C_  ( (SubGrp `  G )  i^i  ~P A ) )
102100, 101syl6bbr 255 . . . . . . . . 9  |-  ( A  e.  (SubGrp `  G
)  ->  ( ran  S 
C_  (SubGrp `  H )  <->  ( ran  S  C_  (SubGrp `  G )  /\  ran  S 
C_  ~P A ) ) )
103102anbi2d 685 . . . . . . . 8  |-  ( A  e.  (SubGrp `  G
)  ->  ( ( S  Fn  dom  S  /\  ran  S  C_  (SubGrp `  H
) )  <->  ( S  Fn  dom  S  /\  ( ran  S  C_  (SubGrp `  G
)  /\  ran  S  C_  ~P A ) ) ) )
104 df-f 5425 . . . . . . . 8  |-  ( S : dom  S --> (SubGrp `  H )  <->  ( S  Fn  dom  S  /\  ran  S 
C_  (SubGrp `  H )
) )
105 df-f 5425 . . . . . . . . . 10  |-  ( S : dom  S --> (SubGrp `  G )  <->  ( S  Fn  dom  S  /\  ran  S 
C_  (SubGrp `  G )
) )
106105anbi1i 677 . . . . . . . . 9  |-  ( ( S : dom  S --> (SubGrp `  G )  /\  ran  S  C_  ~P A
)  <->  ( ( S  Fn  dom  S  /\  ran  S  C_  (SubGrp `  G
) )  /\  ran  S 
C_  ~P A ) )
107 anass 631 . . . . . . . . 9  |-  ( ( ( S  Fn  dom  S  /\  ran  S  C_  (SubGrp `  G ) )  /\  ran  S  C_  ~P A )  <->  ( S  Fn  dom  S  /\  ( ran  S  C_  (SubGrp `  G
)  /\  ran  S  C_  ~P A ) ) )
108106, 107bitri 241 . . . . . . . 8  |-  ( ( S : dom  S --> (SubGrp `  G )  /\  ran  S  C_  ~P A
)  <->  ( S  Fn  dom  S  /\  ( ran 
S  C_  (SubGrp `  G
)  /\  ran  S  C_  ~P A ) ) )
109103, 104, 1083bitr4g 280 . . . . . . 7  |-  ( A  e.  (SubGrp `  G
)  ->  ( S : dom  S --> (SubGrp `  H )  <->  ( S : dom  S --> (SubGrp `  G )  /\  ran  S 
C_  ~P A ) ) )
110109anbi1d 686 . . . . . 6  |-  ( A  e.  (SubGrp `  G
)  ->  ( ( S : dom  S --> (SubGrp `  H )  /\  A. x  e.  dom  S ( A. y  e.  ( dom  S  \  {
x } ) ( S `  x ) 
C_  ( (Cntz `  G ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  G ) } ) )  <->  ( ( S : dom  S --> (SubGrp `  G )  /\  ran  S 
C_  ~P A )  /\  A. x  e.  dom  S
( A. y  e.  ( dom  S  \  { x } ) ( S `  x
)  C_  ( (Cntz `  G ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  G ) } ) ) ) )
11191, 110bitr3d 247 . . . . 5  |-  ( A  e.  (SubGrp `  G
)  ->  ( ( S : dom  S --> (SubGrp `  H )  /\  A. x  e.  dom  S ( A. y  e.  ( dom  S  \  {
x } ) ( S `  x ) 
C_  ( (Cntz `  H ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  H ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  H ) } ) )  <->  ( ( S : dom  S --> (SubGrp `  G )  /\  ran  S 
C_  ~P A )  /\  A. x  e.  dom  S
( A. y  e.  ( dom  S  \  { x } ) ( S `  x
)  C_  ( (Cntz `  G ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  G ) } ) ) ) )
112111adantr 452 . . . 4  |-  ( ( A  e.  (SubGrp `  G )  /\  S  e.  _V )  ->  (
( S : dom  S --> (SubGrp `  H )  /\  A. x  e.  dom  S ( A. y  e.  ( dom  S  \  { x } ) ( S `  x
)  C_  ( (Cntz `  H ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  H ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  H ) } ) )  <->  ( ( S : dom  S --> (SubGrp `  G )  /\  ran  S 
C_  ~P A )  /\  A. x  e.  dom  S
( A. y  e.  ( dom  S  \  { x } ) ( S `  x
)  C_  ( (Cntz `  G ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  G ) } ) ) ) )
113 dmexg 5097 . . . . . 6  |-  ( S  e.  _V  ->  dom  S  e.  _V )
114113adantl 453 . . . . 5  |-  ( ( A  e.  (SubGrp `  G )  /\  S  e.  _V )  ->  dom  S  e.  _V )
115 eqidd 2413 . . . . 5  |-  ( ( A  e.  (SubGrp `  G )  /\  S  e.  _V )  ->  dom  S  =  dom  S )
11641adantr 452 . . . . 5  |-  ( ( A  e.  (SubGrp `  G )  /\  S  e.  _V )  ->  H  e.  Grp )
117 eqid 2412 . . . . . . . 8  |-  ( 0g
`  H )  =  ( 0g `  H
)
11826, 117, 46dmdprd 15522 . . . . . . 7  |-  ( ( dom  S  e.  _V  /\ 
dom  S  =  dom  S )  ->  ( H dom DProd  S  <->  ( H  e. 
Grp  /\  S : dom  S --> (SubGrp `  H )  /\  A. x  e.  dom  S ( A. y  e.  ( dom  S  \  { x } ) ( S `  x
)  C_  ( (Cntz `  H ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  H ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  H ) } ) ) ) )
119 3anass 940 . . . . . . 7  |-  ( ( H  e.  Grp  /\  S : dom  S --> (SubGrp `  H )  /\  A. x  e.  dom  S ( A. y  e.  ( dom  S  \  {
x } ) ( S `  x ) 
C_  ( (Cntz `  H ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  H ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  H ) } ) )  <->  ( H  e.  Grp  /\  ( S : dom  S --> (SubGrp `  H )  /\  A. x  e.  dom  S ( A. y  e.  ( dom  S  \  {
x } ) ( S `  x ) 
C_  ( (Cntz `  H ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  H ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  H ) } ) ) ) )
120118, 119syl6bb 253 . . . . . 6  |-  ( ( dom  S  e.  _V  /\ 
dom  S  =  dom  S )  ->  ( H dom DProd  S  <->  ( H  e. 
Grp  /\  ( S : dom  S --> (SubGrp `  H )  /\  A. x  e.  dom  S ( A. y  e.  ( dom  S  \  {
x } ) ( S `  x ) 
C_  ( (Cntz `  H ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  H ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  H ) } ) ) ) ) )
121120baibd 876 . . . . 5  |-  ( ( ( dom  S  e. 
_V  /\  dom  S  =  dom  S )  /\  H  e.  Grp )  ->  ( H dom DProd  S  <->  ( S : dom  S --> (SubGrp `  H )  /\  A. x  e.  dom  S ( A. y  e.  ( dom  S  \  {
x } ) ( S `  x ) 
C_  ( (Cntz `  H ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  H ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  H ) } ) ) ) )
122114, 115, 116, 121syl21anc 1183 . . . 4  |-  ( ( A  e.  (SubGrp `  G )  /\  S  e.  _V )  ->  ( H dom DProd  S  <->  ( S : dom  S --> (SubGrp `  H )  /\  A. x  e.  dom  S ( A. y  e.  ( dom  S  \  { x } ) ( S `  x
)  C_  ( (Cntz `  H ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  H ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  H ) } ) ) ) )
12335adantr 452 . . . . . . 7  |-  ( ( A  e.  (SubGrp `  G )  /\  S  e.  _V )  ->  G  e.  Grp )
12425, 84, 63dmdprd 15522 . . . . . . . . 9  |-  ( ( dom  S  e.  _V  /\ 
dom  S  =  dom  S )  ->  ( G dom DProd  S  <->  ( G  e. 
Grp  /\  S : dom  S --> (SubGrp `  G )  /\  A. x  e.  dom  S ( A. y  e.  ( dom  S  \  { x } ) ( S `  x
)  C_  ( (Cntz `  G ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  G ) } ) ) ) )
125 3anass 940 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  S : dom  S --> (SubGrp `  G )  /\  A. x  e.  dom  S ( A. y  e.  ( dom  S  \  {
x } ) ( S `  x ) 
C_  ( (Cntz `  G ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  G ) } ) )  <->  ( G  e.  Grp  /\  ( S : dom  S --> (SubGrp `  G )  /\  A. x  e.  dom  S ( A. y  e.  ( dom  S  \  {
x } ) ( S `  x ) 
C_  ( (Cntz `  G ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  G ) } ) ) ) )
126124, 125syl6bb 253 . . . . . . . 8  |-  ( ( dom  S  e.  _V  /\ 
dom  S  =  dom  S )  ->  ( G dom DProd  S  <->  ( G  e. 
Grp  /\  ( S : dom  S --> (SubGrp `  G )  /\  A. x  e.  dom  S ( A. y  e.  ( dom  S  \  {
x } ) ( S `  x ) 
C_  ( (Cntz `  G ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  G ) } ) ) ) ) )
127126baibd 876 . . . . . . 7  |-  ( ( ( dom  S  e. 
_V  /\  dom  S  =  dom  S )  /\  G  e.  Grp )  ->  ( G dom DProd  S  <->  ( S : dom  S --> (SubGrp `  G )  /\  A. x  e.  dom  S ( A. y  e.  ( dom  S  \  {
x } ) ( S `  x ) 
C_  ( (Cntz `  G ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  G ) } ) ) ) )
128114, 115, 123, 127syl21anc 1183 . . . . . 6  |-  ( ( A  e.  (SubGrp `  G )  /\  S  e.  _V )  ->  ( G dom DProd  S  <->  ( S : dom  S --> (SubGrp `  G )  /\  A. x  e.  dom  S ( A. y  e.  ( dom  S  \  { x } ) ( S `  x
)  C_  ( (Cntz `  G ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  G ) } ) ) ) )
129128anbi1d 686 . . . . 5  |-  ( ( A  e.  (SubGrp `  G )  /\  S  e.  _V )  ->  (
( G dom DProd  S  /\  ran  S  C_  ~P A
)  <->  ( ( S : dom  S --> (SubGrp `  G )  /\  A. x  e.  dom  S ( A. y  e.  ( dom  S  \  {
x } ) ( S `  x ) 
C_  ( (Cntz `  G ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  G ) } ) )  /\  ran  S  C_  ~P A
) ) )
130 an32 774 . . . . 5  |-  ( ( ( S : dom  S --> (SubGrp `  G )  /\  A. x  e.  dom  S ( A. y  e.  ( dom  S  \  { x } ) ( S `  x
)  C_  ( (Cntz `  G ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  G ) } ) )  /\  ran  S  C_  ~P A
)  <->  ( ( S : dom  S --> (SubGrp `  G )  /\  ran  S 
C_  ~P A )  /\  A. x  e.  dom  S
( A. y  e.  ( dom  S  \  { x } ) ( S `  x
)  C_  ( (Cntz `  G ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  G ) } ) ) )
131129, 130syl6bb 253 . . . 4  |-  ( ( A  e.  (SubGrp `  G )  /\  S  e.  _V )  ->  (
( G dom DProd  S  /\  ran  S  C_  ~P A
)  <->  ( ( S : dom  S --> (SubGrp `  G )  /\  ran  S 
C_  ~P A )  /\  A. x  e.  dom  S
( A. y  e.  ( dom  S  \  { x } ) ( S `  x
)  C_  ( (Cntz `  G ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  G ) } ) ) ) )
132112, 122, 1313bitr4d 277 . . 3  |-  ( ( A  e.  (SubGrp `  G )  /\  S  e.  _V )  ->  ( H dom DProd  S  <->  ( G dom DProd  S  /\  ran  S  C_  ~P A ) ) )
133132ex 424 . 2  |-  ( A  e.  (SubGrp `  G
)  ->  ( S  e.  _V  ->  ( H dom DProd  S  <->  ( G dom DProd  S  /\  ran  S  C_  ~P A ) ) ) )
1343, 6, 133pm5.21ndd 344 1  |-  ( A  e.  (SubGrp `  G
)  ->  ( H dom DProd  S  <->  ( G dom DProd  S  /\  ran  S  C_  ~P A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   A.wral 2674   _Vcvv 2924    \ cdif 3285    i^i cin 3287    C_ wss 3288   ~Pcpw 3767   {csn 3782   U.cuni 3983   class class class wbr 4180   dom cdm 4845   ran crn 4846   "cima 4848    Fn wfn 5416   -->wf 5417   ` cfv 5421  (class class class)co 6048   Basecbs 13432   ↾s cress 13433   0gc0g 13686  Moorecmre 13770  mrClscmrc 13771  ACScacs 13773   Grpcgrp 14648  SubGrpcsubg 14901  Cntzccntz 15077   DProd cdprd 15517
This theorem is referenced by:  subgdprd  15556  ablfaclem3  15608
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-rep 4288  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668  ax-cnex 9010  ax-resscn 9011  ax-1cn 9012  ax-icn 9013  ax-addcl 9014  ax-addrcl 9015  ax-mulcl 9016  ax-mulrcl 9017  ax-mulcom 9018  ax-addass 9019  ax-mulass 9020  ax-distr 9021  ax-i2m1 9022  ax-1ne0 9023  ax-1rid 9024  ax-rnegex 9025  ax-rrecex 9026  ax-cnre 9027  ax-pre-lttri 9028  ax-pre-lttrn 9029  ax-pre-ltadd 9030  ax-pre-mulgt0 9031
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-nel 2578  df-ral 2679  df-rex 2680  df-reu 2681  df-rmo 2682  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-pss 3304  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-tp 3790  df-op 3791  df-uni 3984  df-int 4019  df-iun 4063  df-iin 4064  df-br 4181  df-opab 4235  df-mpt 4236  df-tr 4271  df-eprel 4462  df-id 4466  df-po 4471  df-so 4472  df-fr 4509  df-we 4511  df-ord 4552  df-on 4553  df-lim 4554  df-suc 4555  df-om 4813  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-ov 6051  df-oprab 6052  df-mpt2 6053  df-1st 6316  df-2nd 6317  df-riota 6516  df-recs 6600  df-rdg 6635  df-1o 6691  df-oadd 6695  df-er 6872  df-ixp 7031  df-en 7077  df-dom 7078  df-sdom 7079  df-fin 7080  df-pnf 9086  df-mnf 9087  df-xr 9088  df-ltxr 9089  df-le 9090  df-sub 9257  df-neg 9258  df-nn 9965  df-2 10022  df-ndx 13435  df-slot 13436  df-base 13437  df-sets 13438  df-ress 13439  df-plusg 13505  df-0g 13690  df-mre 13774  df-mrc 13775  df-acs 13777  df-mnd 14653  df-submnd 14702  df-grp 14775  df-minusg 14776  df-subg 14904  df-cntz 15079  df-dprd 15519
  Copyright terms: Public domain W3C validator