MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgdmdprd Structured version   Unicode version

Theorem subgdmdprd 15623
Description: A direct product in a subgroup. (Contributed by Mario Carneiro, 27-Apr-2016.)
Hypothesis
Ref Expression
subgdprd.1  |-  H  =  ( Gs  A )
Assertion
Ref Expression
subgdmdprd  |-  ( A  e.  (SubGrp `  G
)  ->  ( H dom DProd  S  <->  ( G dom DProd  S  /\  ran  S  C_  ~P A ) ) )

Proof of Theorem subgdmdprd
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reldmdprd 15589 . . . 4  |-  Rel  dom DProd
21brrelex2i 4948 . . 3  |-  ( H dom DProd  S  ->  S  e. 
_V )
32a1i 11 . 2  |-  ( A  e.  (SubGrp `  G
)  ->  ( H dom DProd  S  ->  S  e.  _V ) )
41brrelex2i 4948 . . . 4  |-  ( G dom DProd  S  ->  S  e. 
_V )
54adantr 453 . . 3  |-  ( ( G dom DProd  S  /\  ran  S  C_  ~P A
)  ->  S  e.  _V )
65a1i 11 . 2  |-  ( A  e.  (SubGrp `  G
)  ->  ( ( G dom DProd  S  /\  ran  S  C_ 
~P A )  ->  S  e.  _V )
)
7 ffvelrn 5897 . . . . . . . . . . . . . . . 16  |-  ( ( S : dom  S --> (SubGrp `  H )  /\  x  e.  dom  S )  ->  ( S `  x )  e.  (SubGrp `  H ) )
87ad2ant2lr 730 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  ( x  e.  dom  S  /\  y  e.  ( dom  S  \  {
x } ) ) )  ->  ( S `  x )  e.  (SubGrp `  H ) )
9 eqid 2442 . . . . . . . . . . . . . . . 16  |-  ( Base `  H )  =  (
Base `  H )
109subgss 14976 . . . . . . . . . . . . . . 15  |-  ( ( S `  x )  e.  (SubGrp `  H
)  ->  ( S `  x )  C_  ( Base `  H ) )
118, 10syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  ( x  e.  dom  S  /\  y  e.  ( dom  S  \  {
x } ) ) )  ->  ( S `  x )  C_  ( Base `  H ) )
12 subgdprd.1 . . . . . . . . . . . . . . . 16  |-  H  =  ( Gs  A )
1312subgbas 14979 . . . . . . . . . . . . . . 15  |-  ( A  e.  (SubGrp `  G
)  ->  A  =  ( Base `  H )
)
1413ad2antrr 708 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  ( x  e.  dom  S  /\  y  e.  ( dom  S  \  {
x } ) ) )  ->  A  =  ( Base `  H )
)
1511, 14sseqtr4d 3371 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  ( x  e.  dom  S  /\  y  e.  ( dom  S  \  {
x } ) ) )  ->  ( S `  x )  C_  A
)
1615biantrud 495 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  ( x  e.  dom  S  /\  y  e.  ( dom  S  \  {
x } ) ) )  ->  ( ( S `  x )  C_  ( (Cntz `  G
) `  ( S `  y ) )  <->  ( ( S `  x )  C_  ( (Cntz `  G
) `  ( S `  y ) )  /\  ( S `  x ) 
C_  A ) ) )
17 simpll 732 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  ( x  e.  dom  S  /\  y  e.  ( dom  S  \  {
x } ) ) )  ->  A  e.  (SubGrp `  G ) )
18 simplr 733 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  ( x  e.  dom  S  /\  y  e.  ( dom  S  \  {
x } ) ) )  ->  S : dom  S --> (SubGrp `  H )
)
19 eldifi 3455 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  ( dom  S  \  { x } )  ->  y  e.  dom  S )
2019ad2antll 711 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  ( x  e.  dom  S  /\  y  e.  ( dom  S  \  {
x } ) ) )  ->  y  e.  dom  S )
2118, 20ffvelrnd 5900 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  ( x  e.  dom  S  /\  y  e.  ( dom  S  \  {
x } ) ) )  ->  ( S `  y )  e.  (SubGrp `  H ) )
229subgss 14976 . . . . . . . . . . . . . . . . 17  |-  ( ( S `  y )  e.  (SubGrp `  H
)  ->  ( S `  y )  C_  ( Base `  H ) )
2321, 22syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  ( x  e.  dom  S  /\  y  e.  ( dom  S  \  {
x } ) ) )  ->  ( S `  y )  C_  ( Base `  H ) )
2423, 14sseqtr4d 3371 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  ( x  e.  dom  S  /\  y  e.  ( dom  S  \  {
x } ) ) )  ->  ( S `  y )  C_  A
)
25 eqid 2442 . . . . . . . . . . . . . . . 16  |-  (Cntz `  G )  =  (Cntz `  G )
26 eqid 2442 . . . . . . . . . . . . . . . 16  |-  (Cntz `  H )  =  (Cntz `  H )
2712, 25, 26resscntz 15161 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  (SubGrp `  G )  /\  ( S `  y )  C_  A )  ->  (
(Cntz `  H ) `  ( S `  y
) )  =  ( ( (Cntz `  G
) `  ( S `  y ) )  i^i 
A ) )
2817, 24, 27syl2anc 644 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  ( x  e.  dom  S  /\  y  e.  ( dom  S  \  {
x } ) ) )  ->  ( (Cntz `  H ) `  ( S `  y )
)  =  ( ( (Cntz `  G ) `  ( S `  y
) )  i^i  A
) )
2928sseq2d 3362 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  ( x  e.  dom  S  /\  y  e.  ( dom  S  \  {
x } ) ) )  ->  ( ( S `  x )  C_  ( (Cntz `  H
) `  ( S `  y ) )  <->  ( S `  x )  C_  (
( (Cntz `  G
) `  ( S `  y ) )  i^i 
A ) ) )
30 ssin 3548 . . . . . . . . . . . . 13  |-  ( ( ( S `  x
)  C_  ( (Cntz `  G ) `  ( S `  y )
)  /\  ( S `  x )  C_  A
)  <->  ( S `  x )  C_  (
( (Cntz `  G
) `  ( S `  y ) )  i^i 
A ) )
3129, 30syl6bbr 256 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  ( x  e.  dom  S  /\  y  e.  ( dom  S  \  {
x } ) ) )  ->  ( ( S `  x )  C_  ( (Cntz `  H
) `  ( S `  y ) )  <->  ( ( S `  x )  C_  ( (Cntz `  G
) `  ( S `  y ) )  /\  ( S `  x ) 
C_  A ) ) )
3216, 31bitr4d 249 . . . . . . . . . . 11  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  ( x  e.  dom  S  /\  y  e.  ( dom  S  \  {
x } ) ) )  ->  ( ( S `  x )  C_  ( (Cntz `  G
) `  ( S `  y ) )  <->  ( S `  x )  C_  (
(Cntz `  H ) `  ( S `  y
) ) ) )
3332anassrs 631 . . . . . . . . . 10  |-  ( ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  /\  y  e.  ( dom  S  \  { x } ) )  ->  ( ( S `  x )  C_  ( (Cntz `  G
) `  ( S `  y ) )  <->  ( S `  x )  C_  (
(Cntz `  H ) `  ( S `  y
) ) ) )
3433ralbidva 2727 . . . . . . . . 9  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  ( A. y  e.  ( dom  S  \  { x } ) ( S `  x
)  C_  ( (Cntz `  G ) `  ( S `  y )
)  <->  A. y  e.  ( dom  S  \  {
x } ) ( S `  x ) 
C_  ( (Cntz `  H ) `  ( S `  y )
) ) )
35 subgrcl 14980 . . . . . . . . . . . . . . 15  |-  ( A  e.  (SubGrp `  G
)  ->  G  e.  Grp )
3635ad2antrr 708 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  G  e.  Grp )
37 eqid 2442 . . . . . . . . . . . . . . 15  |-  ( Base `  G )  =  (
Base `  G )
3837subgacs 15006 . . . . . . . . . . . . . 14  |-  ( G  e.  Grp  ->  (SubGrp `  G )  e.  (ACS
`  ( Base `  G
) ) )
39 acsmre 13908 . . . . . . . . . . . . . 14  |-  ( (SubGrp `  G )  e.  (ACS
`  ( Base `  G
) )  ->  (SubGrp `  G )  e.  (Moore `  ( Base `  G
) ) )
4036, 38, 393syl 19 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  (SubGrp `  G )  e.  (Moore `  ( Base `  G ) ) )
4112subggrp 14978 . . . . . . . . . . . . . . . 16  |-  ( A  e.  (SubGrp `  G
)  ->  H  e.  Grp )
4241ad2antrr 708 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  H  e.  Grp )
439subgacs 15006 . . . . . . . . . . . . . . 15  |-  ( H  e.  Grp  ->  (SubGrp `  H )  e.  (ACS
`  ( Base `  H
) ) )
44 acsmre 13908 . . . . . . . . . . . . . . 15  |-  ( (SubGrp `  H )  e.  (ACS
`  ( Base `  H
) )  ->  (SubGrp `  H )  e.  (Moore `  ( Base `  H
) ) )
4542, 43, 443syl 19 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  (SubGrp `  H )  e.  (Moore `  ( Base `  H ) ) )
46 eqid 2442 . . . . . . . . . . . . . 14  |-  (mrCls `  (SubGrp `  H ) )  =  (mrCls `  (SubGrp `  H ) )
47 imassrn 5245 . . . . . . . . . . . . . . . . 17  |-  ( S
" ( dom  S  \  { x } ) )  C_  ran  S
48 frn 5626 . . . . . . . . . . . . . . . . . 18  |-  ( S : dom  S --> (SubGrp `  H )  ->  ran  S 
C_  (SubGrp `  H )
)
4948ad2antlr 709 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  ran  S  C_  (SubGrp `  H ) )
5047, 49syl5ss 3345 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  ( S "
( dom  S  \  {
x } ) ) 
C_  (SubGrp `  H )
)
51 mresspw 13848 . . . . . . . . . . . . . . . . 17  |-  ( (SubGrp `  H )  e.  (Moore `  ( Base `  H
) )  ->  (SubGrp `  H )  C_  ~P ( Base `  H )
)
5245, 51syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  (SubGrp `  H )  C_ 
~P ( Base `  H
) )
5350, 52sstrd 3344 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  ( S "
( dom  S  \  {
x } ) ) 
C_  ~P ( Base `  H
) )
54 sspwuni 4201 . . . . . . . . . . . . . . 15  |-  ( ( S " ( dom 
S  \  { x } ) )  C_  ~P ( Base `  H
)  <->  U. ( S "
( dom  S  \  {
x } ) ) 
C_  ( Base `  H
) )
5553, 54sylib 190 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  U. ( S "
( dom  S  \  {
x } ) ) 
C_  ( Base `  H
) )
5645, 46, 55mrcssidd 13881 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  U. ( S "
( dom  S  \  {
x } ) ) 
C_  ( (mrCls `  (SubGrp `  H ) ) `
 U. ( S
" ( dom  S  \  { x } ) ) ) )
5746mrccl 13867 . . . . . . . . . . . . . . . 16  |-  ( ( (SubGrp `  H )  e.  (Moore `  ( Base `  H ) )  /\  U. ( S " ( dom  S  \  { x } ) )  C_  ( Base `  H )
)  ->  ( (mrCls `  (SubGrp `  H )
) `  U. ( S
" ( dom  S  \  { x } ) ) )  e.  (SubGrp `  H ) )
5845, 55, 57syl2anc 644 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  ( (mrCls `  (SubGrp `  H ) ) `
 U. ( S
" ( dom  S  \  { x } ) ) )  e.  (SubGrp `  H ) )
5912subsubg 14994 . . . . . . . . . . . . . . . 16  |-  ( A  e.  (SubGrp `  G
)  ->  ( (
(mrCls `  (SubGrp `  H
) ) `  U. ( S " ( dom 
S  \  { x } ) ) )  e.  (SubGrp `  H
)  <->  ( ( (mrCls `  (SubGrp `  H )
) `  U. ( S
" ( dom  S  \  { x } ) ) )  e.  (SubGrp `  G )  /\  (
(mrCls `  (SubGrp `  H
) ) `  U. ( S " ( dom 
S  \  { x } ) ) ) 
C_  A ) ) )
6059ad2antrr 708 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  ( ( (mrCls `  (SubGrp `  H )
) `  U. ( S
" ( dom  S  \  { x } ) ) )  e.  (SubGrp `  H )  <->  ( (
(mrCls `  (SubGrp `  H
) ) `  U. ( S " ( dom 
S  \  { x } ) ) )  e.  (SubGrp `  G
)  /\  ( (mrCls `  (SubGrp `  H )
) `  U. ( S
" ( dom  S  \  { x } ) ) )  C_  A
) ) )
6158, 60mpbid 203 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  ( ( (mrCls `  (SubGrp `  H )
) `  U. ( S
" ( dom  S  \  { x } ) ) )  e.  (SubGrp `  G )  /\  (
(mrCls `  (SubGrp `  H
) ) `  U. ( S " ( dom 
S  \  { x } ) ) ) 
C_  A ) )
6261simpld 447 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  ( (mrCls `  (SubGrp `  H ) ) `
 U. ( S
" ( dom  S  \  { x } ) ) )  e.  (SubGrp `  G ) )
63 eqid 2442 . . . . . . . . . . . . . 14  |-  (mrCls `  (SubGrp `  G ) )  =  (mrCls `  (SubGrp `  G ) )
6463mrcsscl 13876 . . . . . . . . . . . . 13  |-  ( ( (SubGrp `  G )  e.  (Moore `  ( Base `  G ) )  /\  U. ( S " ( dom  S  \  { x } ) )  C_  ( (mrCls `  (SubGrp `  H
) ) `  U. ( S " ( dom 
S  \  { x } ) ) )  /\  ( (mrCls `  (SubGrp `  H ) ) `
 U. ( S
" ( dom  S  \  { x } ) ) )  e.  (SubGrp `  G ) )  -> 
( (mrCls `  (SubGrp `  G ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) 
C_  ( (mrCls `  (SubGrp `  H ) ) `
 U. ( S
" ( dom  S  \  { x } ) ) ) )
6540, 56, 62, 64syl3anc 1185 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  ( (mrCls `  (SubGrp `  G ) ) `
 U. ( S
" ( dom  S  \  { x } ) ) )  C_  (
(mrCls `  (SubGrp `  H
) ) `  U. ( S " ( dom 
S  \  { x } ) ) ) )
6613ad2antrr 708 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  A  =  (
Base `  H )
)
6755, 66sseqtr4d 3371 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  U. ( S "
( dom  S  \  {
x } ) ) 
C_  A )
6837subgss 14976 . . . . . . . . . . . . . . . 16  |-  ( A  e.  (SubGrp `  G
)  ->  A  C_  ( Base `  G ) )
6968ad2antrr 708 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  A  C_  ( Base `  G ) )
7067, 69sstrd 3344 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  U. ( S "
( dom  S  \  {
x } ) ) 
C_  ( Base `  G
) )
7140, 63, 70mrcssidd 13881 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  U. ( S "
( dom  S  \  {
x } ) ) 
C_  ( (mrCls `  (SubGrp `  G ) ) `
 U. ( S
" ( dom  S  \  { x } ) ) ) )
7263mrccl 13867 . . . . . . . . . . . . . . 15  |-  ( ( (SubGrp `  G )  e.  (Moore `  ( Base `  G ) )  /\  U. ( S " ( dom  S  \  { x } ) )  C_  ( Base `  G )
)  ->  ( (mrCls `  (SubGrp `  G )
) `  U. ( S
" ( dom  S  \  { x } ) ) )  e.  (SubGrp `  G ) )
7340, 70, 72syl2anc 644 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  ( (mrCls `  (SubGrp `  G ) ) `
 U. ( S
" ( dom  S  \  { x } ) ) )  e.  (SubGrp `  G ) )
74 simpll 732 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  A  e.  (SubGrp `  G ) )
7563mrcsscl 13876 . . . . . . . . . . . . . . 15  |-  ( ( (SubGrp `  G )  e.  (Moore `  ( Base `  G ) )  /\  U. ( S " ( dom  S  \  { x } ) )  C_  A  /\  A  e.  (SubGrp `  G ) )  -> 
( (mrCls `  (SubGrp `  G ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) 
C_  A )
7640, 67, 74, 75syl3anc 1185 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  ( (mrCls `  (SubGrp `  G ) ) `
 U. ( S
" ( dom  S  \  { x } ) ) )  C_  A
)
7712subsubg 14994 . . . . . . . . . . . . . . 15  |-  ( A  e.  (SubGrp `  G
)  ->  ( (
(mrCls `  (SubGrp `  G
) ) `  U. ( S " ( dom 
S  \  { x } ) ) )  e.  (SubGrp `  H
)  <->  ( ( (mrCls `  (SubGrp `  G )
) `  U. ( S
" ( dom  S  \  { x } ) ) )  e.  (SubGrp `  G )  /\  (
(mrCls `  (SubGrp `  G
) ) `  U. ( S " ( dom 
S  \  { x } ) ) ) 
C_  A ) ) )
7877ad2antrr 708 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  ( ( (mrCls `  (SubGrp `  G )
) `  U. ( S
" ( dom  S  \  { x } ) ) )  e.  (SubGrp `  H )  <->  ( (
(mrCls `  (SubGrp `  G
) ) `  U. ( S " ( dom 
S  \  { x } ) ) )  e.  (SubGrp `  G
)  /\  ( (mrCls `  (SubGrp `  G )
) `  U. ( S
" ( dom  S  \  { x } ) ) )  C_  A
) ) )
7973, 76, 78mpbir2and 890 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  ( (mrCls `  (SubGrp `  G ) ) `
 U. ( S
" ( dom  S  \  { x } ) ) )  e.  (SubGrp `  H ) )
8046mrcsscl 13876 . . . . . . . . . . . . 13  |-  ( ( (SubGrp `  H )  e.  (Moore `  ( Base `  H ) )  /\  U. ( S " ( dom  S  \  { x } ) )  C_  ( (mrCls `  (SubGrp `  G
) ) `  U. ( S " ( dom 
S  \  { x } ) ) )  /\  ( (mrCls `  (SubGrp `  G ) ) `
 U. ( S
" ( dom  S  \  { x } ) ) )  e.  (SubGrp `  H ) )  -> 
( (mrCls `  (SubGrp `  H ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) 
C_  ( (mrCls `  (SubGrp `  G ) ) `
 U. ( S
" ( dom  S  \  { x } ) ) ) )
8145, 71, 79, 80syl3anc 1185 . . . . . . . . . . . 12  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  ( (mrCls `  (SubGrp `  H ) ) `
 U. ( S
" ( dom  S  \  { x } ) ) )  C_  (
(mrCls `  (SubGrp `  G
) ) `  U. ( S " ( dom 
S  \  { x } ) ) ) )
8265, 81eqssd 3351 . . . . . . . . . . 11  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  ( (mrCls `  (SubGrp `  G ) ) `
 U. ( S
" ( dom  S  \  { x } ) ) )  =  ( (mrCls `  (SubGrp `  H
) ) `  U. ( S " ( dom 
S  \  { x } ) ) ) )
8382ineq2d 3528 . . . . . . . . . 10  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  ( ( S `
 x )  i^i  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  H ) ) `
 U. ( S
" ( dom  S  \  { x } ) ) ) ) )
84 eqid 2442 . . . . . . . . . . . . 13  |-  ( 0g
`  G )  =  ( 0g `  G
)
8512, 84subg0 14981 . . . . . . . . . . . 12  |-  ( A  e.  (SubGrp `  G
)  ->  ( 0g `  G )  =  ( 0g `  H ) )
8685ad2antrr 708 . . . . . . . . . . 11  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  ( 0g `  G )  =  ( 0g `  H ) )
8786sneqd 3851 . . . . . . . . . 10  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  { ( 0g
`  G ) }  =  { ( 0g
`  H ) } )
8883, 87eqeq12d 2456 . . . . . . . . 9  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  ( ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  G ) ) `
 U. ( S
" ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  G ) }  <->  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  H ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  H ) } ) )
8934, 88anbi12d 693 . . . . . . . 8  |-  ( ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  /\  x  e.  dom  S )  ->  ( ( A. y  e.  ( dom  S 
\  { x }
) ( S `  x )  C_  (
(Cntz `  G ) `  ( S `  y
) )  /\  (
( S `  x
)  i^i  ( (mrCls `  (SubGrp `  G )
) `  U. ( S
" ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  G ) } )  <-> 
( A. y  e.  ( dom  S  \  { x } ) ( S `  x
)  C_  ( (Cntz `  H ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  H ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  H ) } ) ) )
9089ralbidva 2727 . . . . . . 7  |-  ( ( A  e.  (SubGrp `  G )  /\  S : dom  S --> (SubGrp `  H ) )  -> 
( A. x  e. 
dom  S ( A. y  e.  ( dom  S 
\  { x }
) ( S `  x )  C_  (
(Cntz `  G ) `  ( S `  y
) )  /\  (
( S `  x
)  i^i  ( (mrCls `  (SubGrp `  G )
) `  U. ( S
" ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  G ) } )  <->  A. x  e.  dom  S ( A. y  e.  ( dom  S  \  { x } ) ( S `  x
)  C_  ( (Cntz `  H ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  H ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  H ) } ) ) )
9190pm5.32da 624 . . . . . 6  |-  ( A  e.  (SubGrp `  G
)  ->  ( ( S : dom  S --> (SubGrp `  H )  /\  A. x  e.  dom  S ( A. y  e.  ( dom  S  \  {
x } ) ( S `  x ) 
C_  ( (Cntz `  G ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  G ) } ) )  <->  ( S : dom  S --> (SubGrp `  H )  /\  A. x  e.  dom  S ( A. y  e.  ( dom  S  \  {
x } ) ( S `  x ) 
C_  ( (Cntz `  H ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  H ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  H ) } ) ) ) )
9212subsubg 14994 . . . . . . . . . . . . 13  |-  ( A  e.  (SubGrp `  G
)  ->  ( x  e.  (SubGrp `  H )  <->  ( x  e.  (SubGrp `  G )  /\  x  C_  A ) ) )
93 elin 3516 . . . . . . . . . . . . . 14  |-  ( x  e.  ( (SubGrp `  G )  i^i  ~P A )  <->  ( x  e.  (SubGrp `  G )  /\  x  e.  ~P A ) )
94 vex 2965 . . . . . . . . . . . . . . . 16  |-  x  e. 
_V
9594elpw 3829 . . . . . . . . . . . . . . 15  |-  ( x  e.  ~P A  <->  x  C_  A
)
9695anbi2i 677 . . . . . . . . . . . . . 14  |-  ( ( x  e.  (SubGrp `  G )  /\  x  e.  ~P A )  <->  ( x  e.  (SubGrp `  G )  /\  x  C_  A ) )
9793, 96bitri 242 . . . . . . . . . . . . 13  |-  ( x  e.  ( (SubGrp `  G )  i^i  ~P A )  <->  ( x  e.  (SubGrp `  G )  /\  x  C_  A ) )
9892, 97syl6bbr 256 . . . . . . . . . . . 12  |-  ( A  e.  (SubGrp `  G
)  ->  ( x  e.  (SubGrp `  H )  <->  x  e.  ( (SubGrp `  G )  i^i  ~P A ) ) )
9998eqrdv 2440 . . . . . . . . . . 11  |-  ( A  e.  (SubGrp `  G
)  ->  (SubGrp `  H
)  =  ( (SubGrp `  G )  i^i  ~P A ) )
10099sseq2d 3362 . . . . . . . . . 10  |-  ( A  e.  (SubGrp `  G
)  ->  ( ran  S 
C_  (SubGrp `  H )  <->  ran 
S  C_  ( (SubGrp `  G )  i^i  ~P A ) ) )
101 ssin 3548 . . . . . . . . . 10  |-  ( ( ran  S  C_  (SubGrp `  G )  /\  ran  S 
C_  ~P A )  <->  ran  S  C_  ( (SubGrp `  G )  i^i  ~P A ) )
102100, 101syl6bbr 256 . . . . . . . . 9  |-  ( A  e.  (SubGrp `  G
)  ->  ( ran  S 
C_  (SubGrp `  H )  <->  ( ran  S  C_  (SubGrp `  G )  /\  ran  S 
C_  ~P A ) ) )
103102anbi2d 686 . . . . . . . 8  |-  ( A  e.  (SubGrp `  G
)  ->  ( ( S  Fn  dom  S  /\  ran  S  C_  (SubGrp `  H
) )  <->  ( S  Fn  dom  S  /\  ( ran  S  C_  (SubGrp `  G
)  /\  ran  S  C_  ~P A ) ) ) )
104 df-f 5487 . . . . . . . 8  |-  ( S : dom  S --> (SubGrp `  H )  <->  ( S  Fn  dom  S  /\  ran  S 
C_  (SubGrp `  H )
) )
105 df-f 5487 . . . . . . . . . 10  |-  ( S : dom  S --> (SubGrp `  G )  <->  ( S  Fn  dom  S  /\  ran  S 
C_  (SubGrp `  G )
) )
106105anbi1i 678 . . . . . . . . 9  |-  ( ( S : dom  S --> (SubGrp `  G )  /\  ran  S  C_  ~P A
)  <->  ( ( S  Fn  dom  S  /\  ran  S  C_  (SubGrp `  G
) )  /\  ran  S 
C_  ~P A ) )
107 anass 632 . . . . . . . . 9  |-  ( ( ( S  Fn  dom  S  /\  ran  S  C_  (SubGrp `  G ) )  /\  ran  S  C_  ~P A )  <->  ( S  Fn  dom  S  /\  ( ran  S  C_  (SubGrp `  G
)  /\  ran  S  C_  ~P A ) ) )
108106, 107bitri 242 . . . . . . . 8  |-  ( ( S : dom  S --> (SubGrp `  G )  /\  ran  S  C_  ~P A
)  <->  ( S  Fn  dom  S  /\  ( ran 
S  C_  (SubGrp `  G
)  /\  ran  S  C_  ~P A ) ) )
109103, 104, 1083bitr4g 281 . . . . . . 7  |-  ( A  e.  (SubGrp `  G
)  ->  ( S : dom  S --> (SubGrp `  H )  <->  ( S : dom  S --> (SubGrp `  G )  /\  ran  S 
C_  ~P A ) ) )
110109anbi1d 687 . . . . . 6  |-  ( A  e.  (SubGrp `  G
)  ->  ( ( S : dom  S --> (SubGrp `  H )  /\  A. x  e.  dom  S ( A. y  e.  ( dom  S  \  {
x } ) ( S `  x ) 
C_  ( (Cntz `  G ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  G ) } ) )  <->  ( ( S : dom  S --> (SubGrp `  G )  /\  ran  S 
C_  ~P A )  /\  A. x  e.  dom  S
( A. y  e.  ( dom  S  \  { x } ) ( S `  x
)  C_  ( (Cntz `  G ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  G ) } ) ) ) )
11191, 110bitr3d 248 . . . . 5  |-  ( A  e.  (SubGrp `  G
)  ->  ( ( S : dom  S --> (SubGrp `  H )  /\  A. x  e.  dom  S ( A. y  e.  ( dom  S  \  {
x } ) ( S `  x ) 
C_  ( (Cntz `  H ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  H ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  H ) } ) )  <->  ( ( S : dom  S --> (SubGrp `  G )  /\  ran  S 
C_  ~P A )  /\  A. x  e.  dom  S
( A. y  e.  ( dom  S  \  { x } ) ( S `  x
)  C_  ( (Cntz `  G ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  G ) } ) ) ) )
112111adantr 453 . . . 4  |-  ( ( A  e.  (SubGrp `  G )  /\  S  e.  _V )  ->  (
( S : dom  S --> (SubGrp `  H )  /\  A. x  e.  dom  S ( A. y  e.  ( dom  S  \  { x } ) ( S `  x
)  C_  ( (Cntz `  H ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  H ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  H ) } ) )  <->  ( ( S : dom  S --> (SubGrp `  G )  /\  ran  S 
C_  ~P A )  /\  A. x  e.  dom  S
( A. y  e.  ( dom  S  \  { x } ) ( S `  x
)  C_  ( (Cntz `  G ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  G ) } ) ) ) )
113 dmexg 5159 . . . . . 6  |-  ( S  e.  _V  ->  dom  S  e.  _V )
114113adantl 454 . . . . 5  |-  ( ( A  e.  (SubGrp `  G )  /\  S  e.  _V )  ->  dom  S  e.  _V )
115 eqidd 2443 . . . . 5  |-  ( ( A  e.  (SubGrp `  G )  /\  S  e.  _V )  ->  dom  S  =  dom  S )
11641adantr 453 . . . . 5  |-  ( ( A  e.  (SubGrp `  G )  /\  S  e.  _V )  ->  H  e.  Grp )
117 eqid 2442 . . . . . . . 8  |-  ( 0g
`  H )  =  ( 0g `  H
)
11826, 117, 46dmdprd 15590 . . . . . . 7  |-  ( ( dom  S  e.  _V  /\ 
dom  S  =  dom  S )  ->  ( H dom DProd  S  <->  ( H  e. 
Grp  /\  S : dom  S --> (SubGrp `  H )  /\  A. x  e.  dom  S ( A. y  e.  ( dom  S  \  { x } ) ( S `  x
)  C_  ( (Cntz `  H ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  H ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  H ) } ) ) ) )
119 3anass 941 . . . . . . 7  |-  ( ( H  e.  Grp  /\  S : dom  S --> (SubGrp `  H )  /\  A. x  e.  dom  S ( A. y  e.  ( dom  S  \  {
x } ) ( S `  x ) 
C_  ( (Cntz `  H ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  H ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  H ) } ) )  <->  ( H  e.  Grp  /\  ( S : dom  S --> (SubGrp `  H )  /\  A. x  e.  dom  S ( A. y  e.  ( dom  S  \  {
x } ) ( S `  x ) 
C_  ( (Cntz `  H ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  H ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  H ) } ) ) ) )
120118, 119syl6bb 254 . . . . . 6  |-  ( ( dom  S  e.  _V  /\ 
dom  S  =  dom  S )  ->  ( H dom DProd  S  <->  ( H  e. 
Grp  /\  ( S : dom  S --> (SubGrp `  H )  /\  A. x  e.  dom  S ( A. y  e.  ( dom  S  \  {
x } ) ( S `  x ) 
C_  ( (Cntz `  H ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  H ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  H ) } ) ) ) ) )
121120baibd 877 . . . . 5  |-  ( ( ( dom  S  e. 
_V  /\  dom  S  =  dom  S )  /\  H  e.  Grp )  ->  ( H dom DProd  S  <->  ( S : dom  S --> (SubGrp `  H )  /\  A. x  e.  dom  S ( A. y  e.  ( dom  S  \  {
x } ) ( S `  x ) 
C_  ( (Cntz `  H ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  H ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  H ) } ) ) ) )
122114, 115, 116, 121syl21anc 1184 . . . 4  |-  ( ( A  e.  (SubGrp `  G )  /\  S  e.  _V )  ->  ( H dom DProd  S  <->  ( S : dom  S --> (SubGrp `  H )  /\  A. x  e.  dom  S ( A. y  e.  ( dom  S  \  { x } ) ( S `  x
)  C_  ( (Cntz `  H ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  H ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  H ) } ) ) ) )
12335adantr 453 . . . . . . 7  |-  ( ( A  e.  (SubGrp `  G )  /\  S  e.  _V )  ->  G  e.  Grp )
12425, 84, 63dmdprd 15590 . . . . . . . . 9  |-  ( ( dom  S  e.  _V  /\ 
dom  S  =  dom  S )  ->  ( G dom DProd  S  <->  ( G  e. 
Grp  /\  S : dom  S --> (SubGrp `  G )  /\  A. x  e.  dom  S ( A. y  e.  ( dom  S  \  { x } ) ( S `  x
)  C_  ( (Cntz `  G ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  G ) } ) ) ) )
125 3anass 941 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  S : dom  S --> (SubGrp `  G )  /\  A. x  e.  dom  S ( A. y  e.  ( dom  S  \  {
x } ) ( S `  x ) 
C_  ( (Cntz `  G ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  G ) } ) )  <->  ( G  e.  Grp  /\  ( S : dom  S --> (SubGrp `  G )  /\  A. x  e.  dom  S ( A. y  e.  ( dom  S  \  {
x } ) ( S `  x ) 
C_  ( (Cntz `  G ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  G ) } ) ) ) )
126124, 125syl6bb 254 . . . . . . . 8  |-  ( ( dom  S  e.  _V  /\ 
dom  S  =  dom  S )  ->  ( G dom DProd  S  <->  ( G  e. 
Grp  /\  ( S : dom  S --> (SubGrp `  G )  /\  A. x  e.  dom  S ( A. y  e.  ( dom  S  \  {
x } ) ( S `  x ) 
C_  ( (Cntz `  G ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  G ) } ) ) ) ) )
127126baibd 877 . . . . . . 7  |-  ( ( ( dom  S  e. 
_V  /\  dom  S  =  dom  S )  /\  G  e.  Grp )  ->  ( G dom DProd  S  <->  ( S : dom  S --> (SubGrp `  G )  /\  A. x  e.  dom  S ( A. y  e.  ( dom  S  \  {
x } ) ( S `  x ) 
C_  ( (Cntz `  G ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  G ) } ) ) ) )
128114, 115, 123, 127syl21anc 1184 . . . . . 6  |-  ( ( A  e.  (SubGrp `  G )  /\  S  e.  _V )  ->  ( G dom DProd  S  <->  ( S : dom  S --> (SubGrp `  G )  /\  A. x  e.  dom  S ( A. y  e.  ( dom  S  \  { x } ) ( S `  x
)  C_  ( (Cntz `  G ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  G ) } ) ) ) )
129128anbi1d 687 . . . . 5  |-  ( ( A  e.  (SubGrp `  G )  /\  S  e.  _V )  ->  (
( G dom DProd  S  /\  ran  S  C_  ~P A
)  <->  ( ( S : dom  S --> (SubGrp `  G )  /\  A. x  e.  dom  S ( A. y  e.  ( dom  S  \  {
x } ) ( S `  x ) 
C_  ( (Cntz `  G ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  G ) } ) )  /\  ran  S  C_  ~P A
) ) )
130 an32 775 . . . . 5  |-  ( ( ( S : dom  S --> (SubGrp `  G )  /\  A. x  e.  dom  S ( A. y  e.  ( dom  S  \  { x } ) ( S `  x
)  C_  ( (Cntz `  G ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  G ) } ) )  /\  ran  S  C_  ~P A
)  <->  ( ( S : dom  S --> (SubGrp `  G )  /\  ran  S 
C_  ~P A )  /\  A. x  e.  dom  S
( A. y  e.  ( dom  S  \  { x } ) ( S `  x
)  C_  ( (Cntz `  G ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  G ) } ) ) )
131129, 130syl6bb 254 . . . 4  |-  ( ( A  e.  (SubGrp `  G )  /\  S  e.  _V )  ->  (
( G dom DProd  S  /\  ran  S  C_  ~P A
)  <->  ( ( S : dom  S --> (SubGrp `  G )  /\  ran  S 
C_  ~P A )  /\  A. x  e.  dom  S
( A. y  e.  ( dom  S  \  { x } ) ( S `  x
)  C_  ( (Cntz `  G ) `  ( S `  y )
)  /\  ( ( S `  x )  i^i  ( (mrCls `  (SubGrp `  G ) ) `  U. ( S " ( dom  S  \  { x } ) ) ) )  =  { ( 0g `  G ) } ) ) ) )
132112, 122, 1313bitr4d 278 . . 3  |-  ( ( A  e.  (SubGrp `  G )  /\  S  e.  _V )  ->  ( H dom DProd  S  <->  ( G dom DProd  S  /\  ran  S  C_  ~P A ) ) )
133132ex 425 . 2  |-  ( A  e.  (SubGrp `  G
)  ->  ( S  e.  _V  ->  ( H dom DProd  S  <->  ( G dom DProd  S  /\  ran  S  C_  ~P A ) ) ) )
1343, 6, 133pm5.21ndd 345 1  |-  ( A  e.  (SubGrp `  G
)  ->  ( H dom DProd  S  <->  ( G dom DProd  S  /\  ran  S  C_  ~P A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1727   A.wral 2711   _Vcvv 2962    \ cdif 3303    i^i cin 3305    C_ wss 3306   ~Pcpw 3823   {csn 3838   U.cuni 4039   class class class wbr 4237   dom cdm 4907   ran crn 4908   "cima 4910    Fn wfn 5478   -->wf 5479   ` cfv 5483  (class class class)co 6110   Basecbs 13500   ↾s cress 13501   0gc0g 13754  Moorecmre 13838  mrClscmrc 13839  ACScacs 13841   Grpcgrp 14716  SubGrpcsubg 14969  Cntzccntz 15145   DProd cdprd 15585
This theorem is referenced by:  subgdprd  15624  ablfaclem3  15676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-13 1729  ax-14 1731  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423  ax-rep 4345  ax-sep 4355  ax-nul 4363  ax-pow 4406  ax-pr 4432  ax-un 4730  ax-cnex 9077  ax-resscn 9078  ax-1cn 9079  ax-icn 9080  ax-addcl 9081  ax-addrcl 9082  ax-mulcl 9083  ax-mulrcl 9084  ax-mulcom 9085  ax-addass 9086  ax-mulass 9087  ax-distr 9088  ax-i2m1 9089  ax-1ne0 9090  ax-1rid 9091  ax-rnegex 9092  ax-rrecex 9093  ax-cnre 9094  ax-pre-lttri 9095  ax-pre-lttrn 9096  ax-pre-ltadd 9097  ax-pre-mulgt0 9098
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2291  df-mo 2292  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-nel 2608  df-ral 2716  df-rex 2717  df-reu 2718  df-rmo 2719  df-rab 2720  df-v 2964  df-sbc 3168  df-csb 3268  df-dif 3309  df-un 3311  df-in 3313  df-ss 3320  df-pss 3322  df-nul 3614  df-if 3764  df-pw 3825  df-sn 3844  df-pr 3845  df-tp 3846  df-op 3847  df-uni 4040  df-int 4075  df-iun 4119  df-iin 4120  df-br 4238  df-opab 4292  df-mpt 4293  df-tr 4328  df-eprel 4523  df-id 4527  df-po 4532  df-so 4533  df-fr 4570  df-we 4572  df-ord 4613  df-on 4614  df-lim 4615  df-suc 4616  df-om 4875  df-xp 4913  df-rel 4914  df-cnv 4915  df-co 4916  df-dm 4917  df-rn 4918  df-res 4919  df-ima 4920  df-iota 5447  df-fun 5485  df-fn 5486  df-f 5487  df-f1 5488  df-fo 5489  df-f1o 5490  df-fv 5491  df-ov 6113  df-oprab 6114  df-mpt2 6115  df-1st 6378  df-2nd 6379  df-riota 6578  df-recs 6662  df-rdg 6697  df-1o 6753  df-oadd 6757  df-er 6934  df-ixp 7093  df-en 7139  df-dom 7140  df-sdom 7141  df-fin 7142  df-pnf 9153  df-mnf 9154  df-xr 9155  df-ltxr 9156  df-le 9157  df-sub 9324  df-neg 9325  df-nn 10032  df-2 10089  df-ndx 13503  df-slot 13504  df-base 13505  df-sets 13506  df-ress 13507  df-plusg 13573  df-0g 13758  df-mre 13842  df-mrc 13843  df-acs 13845  df-mnd 14721  df-submnd 14770  df-grp 14843  df-minusg 14844  df-subg 14972  df-cntz 15147  df-dprd 15587
  Copyright terms: Public domain W3C validator