MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgga Unicode version

Theorem subgga 14997
Description: A subgroup acts on its parent group. (Contributed by Jeff Hankins, 13-Aug-2009.) (Proof shortened by Mario Carneiro, 13-Jan-2015.)
Hypotheses
Ref Expression
subgga.1  |-  X  =  ( Base `  G
)
subgga.2  |-  .+  =  ( +g  `  G )
subgga.3  |-  H  =  ( Gs  Y )
subgga.4  |-  F  =  ( x  e.  Y ,  y  e.  X  |->  ( x  .+  y
) )
Assertion
Ref Expression
subgga  |-  ( Y  e.  (SubGrp `  G
)  ->  F  e.  ( H  GrpAct  X ) )
Distinct variable groups:    x, y, G    x, X, y    x, Y, y    x,  .+ , y
Allowed substitution hints:    F( x, y)    H( x, y)

Proof of Theorem subgga
Dummy variables  v  u  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subgga.3 . . . 4  |-  H  =  ( Gs  Y )
21subggrp 14867 . . 3  |-  ( Y  e.  (SubGrp `  G
)  ->  H  e.  Grp )
3 subgga.1 . . . 4  |-  X  =  ( Base `  G
)
4 fvex 5675 . . . 4  |-  ( Base `  G )  e.  _V
53, 4eqeltri 2450 . . 3  |-  X  e. 
_V
62, 5jctir 525 . 2  |-  ( Y  e.  (SubGrp `  G
)  ->  ( H  e.  Grp  /\  X  e. 
_V ) )
7 subgrcl 14869 . . . . . . . 8  |-  ( Y  e.  (SubGrp `  G
)  ->  G  e.  Grp )
87adantr 452 . . . . . . 7  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  e.  Y  /\  y  e.  X )
)  ->  G  e.  Grp )
93subgss 14865 . . . . . . . . 9  |-  ( Y  e.  (SubGrp `  G
)  ->  Y  C_  X
)
109sselda 3284 . . . . . . . 8  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  e.  Y )  ->  x  e.  X )
1110adantrr 698 . . . . . . 7  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  e.  Y  /\  y  e.  X )
)  ->  x  e.  X )
12 simprr 734 . . . . . . 7  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  e.  Y  /\  y  e.  X )
)  ->  y  e.  X )
13 subgga.2 . . . . . . . 8  |-  .+  =  ( +g  `  G )
143, 13grpcl 14738 . . . . . . 7  |-  ( ( G  e.  Grp  /\  x  e.  X  /\  y  e.  X )  ->  ( x  .+  y
)  e.  X )
158, 11, 12, 14syl3anc 1184 . . . . . 6  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  e.  Y  /\  y  e.  X )
)  ->  ( x  .+  y )  e.  X
)
1615ralrimivva 2734 . . . . 5  |-  ( Y  e.  (SubGrp `  G
)  ->  A. x  e.  Y  A. y  e.  X  ( x  .+  y )  e.  X
)
17 subgga.4 . . . . . 6  |-  F  =  ( x  e.  Y ,  y  e.  X  |->  ( x  .+  y
) )
1817fmpt2 6350 . . . . 5  |-  ( A. x  e.  Y  A. y  e.  X  (
x  .+  y )  e.  X  <->  F : ( Y  X.  X ) --> X )
1916, 18sylib 189 . . . 4  |-  ( Y  e.  (SubGrp `  G
)  ->  F :
( Y  X.  X
) --> X )
201subgbas 14868 . . . . . 6  |-  ( Y  e.  (SubGrp `  G
)  ->  Y  =  ( Base `  H )
)
2120xpeq1d 4834 . . . . 5  |-  ( Y  e.  (SubGrp `  G
)  ->  ( Y  X.  X )  =  ( ( Base `  H
)  X.  X ) )
2221feq2d 5514 . . . 4  |-  ( Y  e.  (SubGrp `  G
)  ->  ( F : ( Y  X.  X ) --> X  <->  F :
( ( Base `  H
)  X.  X ) --> X ) )
2319, 22mpbid 202 . . 3  |-  ( Y  e.  (SubGrp `  G
)  ->  F :
( ( Base `  H
)  X.  X ) --> X )
24 eqid 2380 . . . . . . . 8  |-  ( 0g
`  G )  =  ( 0g `  G
)
2524subg0cl 14872 . . . . . . 7  |-  ( Y  e.  (SubGrp `  G
)  ->  ( 0g `  G )  e.  Y
)
26 oveq12 6022 . . . . . . . 8  |-  ( ( x  =  ( 0g
`  G )  /\  y  =  u )  ->  ( x  .+  y
)  =  ( ( 0g `  G ) 
.+  u ) )
27 ovex 6038 . . . . . . . 8  |-  ( ( 0g `  G ) 
.+  u )  e. 
_V
2826, 17, 27ovmpt2a 6136 . . . . . . 7  |-  ( ( ( 0g `  G
)  e.  Y  /\  u  e.  X )  ->  ( ( 0g `  G ) F u )  =  ( ( 0g `  G ) 
.+  u ) )
2925, 28sylan 458 . . . . . 6  |-  ( ( Y  e.  (SubGrp `  G )  /\  u  e.  X )  ->  (
( 0g `  G
) F u )  =  ( ( 0g
`  G )  .+  u ) )
301, 24subg0 14870 . . . . . . . 8  |-  ( Y  e.  (SubGrp `  G
)  ->  ( 0g `  G )  =  ( 0g `  H ) )
3130oveq1d 6028 . . . . . . 7  |-  ( Y  e.  (SubGrp `  G
)  ->  ( ( 0g `  G ) F u )  =  ( ( 0g `  H
) F u ) )
3231adantr 452 . . . . . 6  |-  ( ( Y  e.  (SubGrp `  G )  /\  u  e.  X )  ->  (
( 0g `  G
) F u )  =  ( ( 0g
`  H ) F u ) )
333, 13, 24grplid 14755 . . . . . . 7  |-  ( ( G  e.  Grp  /\  u  e.  X )  ->  ( ( 0g `  G )  .+  u
)  =  u )
347, 33sylan 458 . . . . . 6  |-  ( ( Y  e.  (SubGrp `  G )  /\  u  e.  X )  ->  (
( 0g `  G
)  .+  u )  =  u )
3529, 32, 343eqtr3d 2420 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  u  e.  X )  ->  (
( 0g `  H
) F u )  =  u )
367ad2antrr 707 . . . . . . . . . 10  |-  ( ( ( Y  e.  (SubGrp `  G )  /\  u  e.  X )  /\  (
v  e.  Y  /\  w  e.  Y )
)  ->  G  e.  Grp )
379ad2antrr 707 . . . . . . . . . . 11  |-  ( ( ( Y  e.  (SubGrp `  G )  /\  u  e.  X )  /\  (
v  e.  Y  /\  w  e.  Y )
)  ->  Y  C_  X
)
38 simprl 733 . . . . . . . . . . 11  |-  ( ( ( Y  e.  (SubGrp `  G )  /\  u  e.  X )  /\  (
v  e.  Y  /\  w  e.  Y )
)  ->  v  e.  Y )
3937, 38sseldd 3285 . . . . . . . . . 10  |-  ( ( ( Y  e.  (SubGrp `  G )  /\  u  e.  X )  /\  (
v  e.  Y  /\  w  e.  Y )
)  ->  v  e.  X )
40 simprr 734 . . . . . . . . . . 11  |-  ( ( ( Y  e.  (SubGrp `  G )  /\  u  e.  X )  /\  (
v  e.  Y  /\  w  e.  Y )
)  ->  w  e.  Y )
4137, 40sseldd 3285 . . . . . . . . . 10  |-  ( ( ( Y  e.  (SubGrp `  G )  /\  u  e.  X )  /\  (
v  e.  Y  /\  w  e.  Y )
)  ->  w  e.  X )
42 simplr 732 . . . . . . . . . 10  |-  ( ( ( Y  e.  (SubGrp `  G )  /\  u  e.  X )  /\  (
v  e.  Y  /\  w  e.  Y )
)  ->  u  e.  X )
433, 13grpass 14739 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  ( v  e.  X  /\  w  e.  X  /\  u  e.  X
) )  ->  (
( v  .+  w
)  .+  u )  =  ( v  .+  ( w  .+  u ) ) )
4436, 39, 41, 42, 43syl13anc 1186 . . . . . . . . 9  |-  ( ( ( Y  e.  (SubGrp `  G )  /\  u  e.  X )  /\  (
v  e.  Y  /\  w  e.  Y )
)  ->  ( (
v  .+  w )  .+  u )  =  ( v  .+  ( w 
.+  u ) ) )
453, 13grpcl 14738 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  w  e.  X  /\  u  e.  X )  ->  ( w  .+  u
)  e.  X )
4636, 41, 42, 45syl3anc 1184 . . . . . . . . . 10  |-  ( ( ( Y  e.  (SubGrp `  G )  /\  u  e.  X )  /\  (
v  e.  Y  /\  w  e.  Y )
)  ->  ( w  .+  u )  e.  X
)
47 oveq12 6022 . . . . . . . . . . 11  |-  ( ( x  =  v  /\  y  =  ( w  .+  u ) )  -> 
( x  .+  y
)  =  ( v 
.+  ( w  .+  u ) ) )
48 ovex 6038 . . . . . . . . . . 11  |-  ( v 
.+  ( w  .+  u ) )  e. 
_V
4947, 17, 48ovmpt2a 6136 . . . . . . . . . 10  |-  ( ( v  e.  Y  /\  ( w  .+  u )  e.  X )  -> 
( v F ( w  .+  u ) )  =  ( v 
.+  ( w  .+  u ) ) )
5038, 46, 49syl2anc 643 . . . . . . . . 9  |-  ( ( ( Y  e.  (SubGrp `  G )  /\  u  e.  X )  /\  (
v  e.  Y  /\  w  e.  Y )
)  ->  ( v F ( w  .+  u ) )  =  ( v  .+  (
w  .+  u )
) )
5144, 50eqtr4d 2415 . . . . . . . 8  |-  ( ( ( Y  e.  (SubGrp `  G )  /\  u  e.  X )  /\  (
v  e.  Y  /\  w  e.  Y )
)  ->  ( (
v  .+  w )  .+  u )  =  ( v F ( w 
.+  u ) ) )
5213subgcl 14874 . . . . . . . . . . 11  |-  ( ( Y  e.  (SubGrp `  G )  /\  v  e.  Y  /\  w  e.  Y )  ->  (
v  .+  w )  e.  Y )
53523expb 1154 . . . . . . . . . 10  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
v  e.  Y  /\  w  e.  Y )
)  ->  ( v  .+  w )  e.  Y
)
5453adantlr 696 . . . . . . . . 9  |-  ( ( ( Y  e.  (SubGrp `  G )  /\  u  e.  X )  /\  (
v  e.  Y  /\  w  e.  Y )
)  ->  ( v  .+  w )  e.  Y
)
55 oveq12 6022 . . . . . . . . . 10  |-  ( ( x  =  ( v 
.+  w )  /\  y  =  u )  ->  ( x  .+  y
)  =  ( ( v  .+  w ) 
.+  u ) )
56 ovex 6038 . . . . . . . . . 10  |-  ( ( v  .+  w ) 
.+  u )  e. 
_V
5755, 17, 56ovmpt2a 6136 . . . . . . . . 9  |-  ( ( ( v  .+  w
)  e.  Y  /\  u  e.  X )  ->  ( ( v  .+  w ) F u )  =  ( ( v  .+  w ) 
.+  u ) )
5854, 42, 57syl2anc 643 . . . . . . . 8  |-  ( ( ( Y  e.  (SubGrp `  G )  /\  u  e.  X )  /\  (
v  e.  Y  /\  w  e.  Y )
)  ->  ( (
v  .+  w ) F u )  =  ( ( v  .+  w )  .+  u
) )
59 oveq12 6022 . . . . . . . . . . 11  |-  ( ( x  =  w  /\  y  =  u )  ->  ( x  .+  y
)  =  ( w 
.+  u ) )
60 ovex 6038 . . . . . . . . . . 11  |-  ( w 
.+  u )  e. 
_V
6159, 17, 60ovmpt2a 6136 . . . . . . . . . 10  |-  ( ( w  e.  Y  /\  u  e.  X )  ->  ( w F u )  =  ( w 
.+  u ) )
6240, 42, 61syl2anc 643 . . . . . . . . 9  |-  ( ( ( Y  e.  (SubGrp `  G )  /\  u  e.  X )  /\  (
v  e.  Y  /\  w  e.  Y )
)  ->  ( w F u )  =  ( w  .+  u
) )
6362oveq2d 6029 . . . . . . . 8  |-  ( ( ( Y  e.  (SubGrp `  G )  /\  u  e.  X )  /\  (
v  e.  Y  /\  w  e.  Y )
)  ->  ( v F ( w F u ) )  =  ( v F ( w  .+  u ) ) )
6451, 58, 633eqtr4d 2422 . . . . . . 7  |-  ( ( ( Y  e.  (SubGrp `  G )  /\  u  e.  X )  /\  (
v  e.  Y  /\  w  e.  Y )
)  ->  ( (
v  .+  w ) F u )  =  ( v F ( w F u ) ) )
6564ralrimivva 2734 . . . . . 6  |-  ( ( Y  e.  (SubGrp `  G )  /\  u  e.  X )  ->  A. v  e.  Y  A. w  e.  Y  ( (
v  .+  w ) F u )  =  ( v F ( w F u ) ) )
661, 13ressplusg 13491 . . . . . . . . . . . 12  |-  ( Y  e.  (SubGrp `  G
)  ->  .+  =  ( +g  `  H ) )
6766oveqd 6030 . . . . . . . . . . 11  |-  ( Y  e.  (SubGrp `  G
)  ->  ( v  .+  w )  =  ( v ( +g  `  H
) w ) )
6867oveq1d 6028 . . . . . . . . . 10  |-  ( Y  e.  (SubGrp `  G
)  ->  ( (
v  .+  w ) F u )  =  ( ( v ( +g  `  H ) w ) F u ) )
6968eqeq1d 2388 . . . . . . . . 9  |-  ( Y  e.  (SubGrp `  G
)  ->  ( (
( v  .+  w
) F u )  =  ( v F ( w F u ) )  <->  ( (
v ( +g  `  H
) w ) F u )  =  ( v F ( w F u ) ) ) )
7020, 69raleqbidv 2852 . . . . . . . 8  |-  ( Y  e.  (SubGrp `  G
)  ->  ( A. w  e.  Y  (
( v  .+  w
) F u )  =  ( v F ( w F u ) )  <->  A. w  e.  ( Base `  H
) ( ( v ( +g  `  H
) w ) F u )  =  ( v F ( w F u ) ) ) )
7120, 70raleqbidv 2852 . . . . . . 7  |-  ( Y  e.  (SubGrp `  G
)  ->  ( A. v  e.  Y  A. w  e.  Y  (
( v  .+  w
) F u )  =  ( v F ( w F u ) )  <->  A. v  e.  ( Base `  H
) A. w  e.  ( Base `  H
) ( ( v ( +g  `  H
) w ) F u )  =  ( v F ( w F u ) ) ) )
7271biimpa 471 . . . . . 6  |-  ( ( Y  e.  (SubGrp `  G )  /\  A. v  e.  Y  A. w  e.  Y  (
( v  .+  w
) F u )  =  ( v F ( w F u ) ) )  ->  A. v  e.  ( Base `  H ) A. w  e.  ( Base `  H ) ( ( v ( +g  `  H
) w ) F u )  =  ( v F ( w F u ) ) )
7365, 72syldan 457 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  u  e.  X )  ->  A. v  e.  ( Base `  H
) A. w  e.  ( Base `  H
) ( ( v ( +g  `  H
) w ) F u )  =  ( v F ( w F u ) ) )
7435, 73jca 519 . . . 4  |-  ( ( Y  e.  (SubGrp `  G )  /\  u  e.  X )  ->  (
( ( 0g `  H ) F u )  =  u  /\  A. v  e.  ( Base `  H ) A. w  e.  ( Base `  H
) ( ( v ( +g  `  H
) w ) F u )  =  ( v F ( w F u ) ) ) )
7574ralrimiva 2725 . . 3  |-  ( Y  e.  (SubGrp `  G
)  ->  A. u  e.  X  ( (
( 0g `  H
) F u )  =  u  /\  A. v  e.  ( Base `  H ) A. w  e.  ( Base `  H
) ( ( v ( +g  `  H
) w ) F u )  =  ( v F ( w F u ) ) ) )
7623, 75jca 519 . 2  |-  ( Y  e.  (SubGrp `  G
)  ->  ( F : ( ( Base `  H )  X.  X
) --> X  /\  A. u  e.  X  (
( ( 0g `  H ) F u )  =  u  /\  A. v  e.  ( Base `  H ) A. w  e.  ( Base `  H
) ( ( v ( +g  `  H
) w ) F u )  =  ( v F ( w F u ) ) ) ) )
77 eqid 2380 . . 3  |-  ( Base `  H )  =  (
Base `  H )
78 eqid 2380 . . 3  |-  ( +g  `  H )  =  ( +g  `  H )
79 eqid 2380 . . 3  |-  ( 0g
`  H )  =  ( 0g `  H
)
8077, 78, 79isga 14988 . 2  |-  ( F  e.  ( H  GrpAct  X )  <->  ( ( H  e.  Grp  /\  X  e.  _V )  /\  ( F : ( ( Base `  H )  X.  X
) --> X  /\  A. u  e.  X  (
( ( 0g `  H ) F u )  =  u  /\  A. v  e.  ( Base `  H ) A. w  e.  ( Base `  H
) ( ( v ( +g  `  H
) w ) F u )  =  ( v F ( w F u ) ) ) ) ) )
816, 76, 80sylanbrc 646 1  |-  ( Y  e.  (SubGrp `  G
)  ->  F  e.  ( H  GrpAct  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1717   A.wral 2642   _Vcvv 2892    C_ wss 3256    X. cxp 4809   -->wf 5383   ` cfv 5387  (class class class)co 6013    e. cmpt2 6015   Basecbs 13389   ↾s cress 13390   +g cplusg 13449   0gc0g 13643   Grpcgrp 14605  SubGrpcsubg 14858    GrpAct cga 14986
This theorem is referenced by:  gaid2  15000
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634  ax-cnex 8972  ax-resscn 8973  ax-1cn 8974  ax-icn 8975  ax-addcl 8976  ax-addrcl 8977  ax-mulcl 8978  ax-mulrcl 8979  ax-mulcom 8980  ax-addass 8981  ax-mulass 8982  ax-distr 8983  ax-i2m1 8984  ax-1ne0 8985  ax-1rid 8986  ax-rnegex 8987  ax-rrecex 8988  ax-cnre 8989  ax-pre-lttri 8990  ax-pre-lttrn 8991  ax-pre-ltadd 8992  ax-pre-mulgt0 8993
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-nel 2546  df-ral 2647  df-rex 2648  df-reu 2649  df-rmo 2650  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-pss 3272  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-tp 3758  df-op 3759  df-uni 3951  df-iun 4030  df-br 4147  df-opab 4201  df-mpt 4202  df-tr 4237  df-eprel 4428  df-id 4432  df-po 4437  df-so 4438  df-fr 4475  df-we 4477  df-ord 4518  df-on 4519  df-lim 4520  df-suc 4521  df-om 4779  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-f1 5392  df-fo 5393  df-f1o 5394  df-fv 5395  df-ov 6016  df-oprab 6017  df-mpt2 6018  df-1st 6281  df-2nd 6282  df-riota 6478  df-recs 6562  df-rdg 6597  df-er 6834  df-map 6949  df-en 7039  df-dom 7040  df-sdom 7041  df-pnf 9048  df-mnf 9049  df-xr 9050  df-ltxr 9051  df-le 9052  df-sub 9218  df-neg 9219  df-nn 9926  df-2 9983  df-ndx 13392  df-slot 13393  df-base 13394  df-sets 13395  df-ress 13396  df-plusg 13462  df-0g 13647  df-mnd 14610  df-grp 14732  df-subg 14861  df-ga 14987
  Copyright terms: Public domain W3C validator