MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgga Unicode version

Theorem subgga 14770
Description: A subgroup acts on its parent group. (Contributed by Jeff Hankins, 13-Aug-2009.) (Proof shortened by Mario Carneiro, 13-Jan-2015.)
Hypotheses
Ref Expression
subgga.1  |-  X  =  ( Base `  G
)
subgga.2  |-  .+  =  ( +g  `  G )
subgga.3  |-  H  =  ( Gs  Y )
subgga.4  |-  F  =  ( x  e.  Y ,  y  e.  X  |->  ( x  .+  y
) )
Assertion
Ref Expression
subgga  |-  ( Y  e.  (SubGrp `  G
)  ->  F  e.  ( H  GrpAct  X ) )
Distinct variable groups:    x, y, G    x, X, y    x, Y, y    x,  .+ , y
Allowed substitution hints:    F( x, y)    H( x, y)

Proof of Theorem subgga
Dummy variables  v  u  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subgga.3 . . . 4  |-  H  =  ( Gs  Y )
21subggrp 14640 . . 3  |-  ( Y  e.  (SubGrp `  G
)  ->  H  e.  Grp )
3 subgga.1 . . . 4  |-  X  =  ( Base `  G
)
4 fvex 5555 . . . 4  |-  ( Base `  G )  e.  _V
53, 4eqeltri 2366 . . 3  |-  X  e. 
_V
62, 5jctir 524 . 2  |-  ( Y  e.  (SubGrp `  G
)  ->  ( H  e.  Grp  /\  X  e. 
_V ) )
7 subgrcl 14642 . . . . . . . 8  |-  ( Y  e.  (SubGrp `  G
)  ->  G  e.  Grp )
87adantr 451 . . . . . . 7  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  e.  Y  /\  y  e.  X )
)  ->  G  e.  Grp )
93subgss 14638 . . . . . . . . 9  |-  ( Y  e.  (SubGrp `  G
)  ->  Y  C_  X
)
109sselda 3193 . . . . . . . 8  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  e.  Y )  ->  x  e.  X )
1110adantrr 697 . . . . . . 7  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  e.  Y  /\  y  e.  X )
)  ->  x  e.  X )
12 simprr 733 . . . . . . 7  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  e.  Y  /\  y  e.  X )
)  ->  y  e.  X )
13 subgga.2 . . . . . . . 8  |-  .+  =  ( +g  `  G )
143, 13grpcl 14511 . . . . . . 7  |-  ( ( G  e.  Grp  /\  x  e.  X  /\  y  e.  X )  ->  ( x  .+  y
)  e.  X )
158, 11, 12, 14syl3anc 1182 . . . . . 6  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
x  e.  Y  /\  y  e.  X )
)  ->  ( x  .+  y )  e.  X
)
1615ralrimivva 2648 . . . . 5  |-  ( Y  e.  (SubGrp `  G
)  ->  A. x  e.  Y  A. y  e.  X  ( x  .+  y )  e.  X
)
17 subgga.4 . . . . . 6  |-  F  =  ( x  e.  Y ,  y  e.  X  |->  ( x  .+  y
) )
1817fmpt2 6207 . . . . 5  |-  ( A. x  e.  Y  A. y  e.  X  (
x  .+  y )  e.  X  <->  F : ( Y  X.  X ) --> X )
1916, 18sylib 188 . . . 4  |-  ( Y  e.  (SubGrp `  G
)  ->  F :
( Y  X.  X
) --> X )
201subgbas 14641 . . . . . 6  |-  ( Y  e.  (SubGrp `  G
)  ->  Y  =  ( Base `  H )
)
2120xpeq1d 4728 . . . . 5  |-  ( Y  e.  (SubGrp `  G
)  ->  ( Y  X.  X )  =  ( ( Base `  H
)  X.  X ) )
2221feq2d 5396 . . . 4  |-  ( Y  e.  (SubGrp `  G
)  ->  ( F : ( Y  X.  X ) --> X  <->  F :
( ( Base `  H
)  X.  X ) --> X ) )
2319, 22mpbid 201 . . 3  |-  ( Y  e.  (SubGrp `  G
)  ->  F :
( ( Base `  H
)  X.  X ) --> X )
24 eqid 2296 . . . . . . . 8  |-  ( 0g
`  G )  =  ( 0g `  G
)
2524subg0cl 14645 . . . . . . 7  |-  ( Y  e.  (SubGrp `  G
)  ->  ( 0g `  G )  e.  Y
)
26 oveq12 5883 . . . . . . . 8  |-  ( ( x  =  ( 0g
`  G )  /\  y  =  u )  ->  ( x  .+  y
)  =  ( ( 0g `  G ) 
.+  u ) )
27 ovex 5899 . . . . . . . 8  |-  ( ( 0g `  G ) 
.+  u )  e. 
_V
2826, 17, 27ovmpt2a 5994 . . . . . . 7  |-  ( ( ( 0g `  G
)  e.  Y  /\  u  e.  X )  ->  ( ( 0g `  G ) F u )  =  ( ( 0g `  G ) 
.+  u ) )
2925, 28sylan 457 . . . . . 6  |-  ( ( Y  e.  (SubGrp `  G )  /\  u  e.  X )  ->  (
( 0g `  G
) F u )  =  ( ( 0g
`  G )  .+  u ) )
301, 24subg0 14643 . . . . . . . 8  |-  ( Y  e.  (SubGrp `  G
)  ->  ( 0g `  G )  =  ( 0g `  H ) )
3130oveq1d 5889 . . . . . . 7  |-  ( Y  e.  (SubGrp `  G
)  ->  ( ( 0g `  G ) F u )  =  ( ( 0g `  H
) F u ) )
3231adantr 451 . . . . . 6  |-  ( ( Y  e.  (SubGrp `  G )  /\  u  e.  X )  ->  (
( 0g `  G
) F u )  =  ( ( 0g
`  H ) F u ) )
333, 13, 24grplid 14528 . . . . . . 7  |-  ( ( G  e.  Grp  /\  u  e.  X )  ->  ( ( 0g `  G )  .+  u
)  =  u )
347, 33sylan 457 . . . . . 6  |-  ( ( Y  e.  (SubGrp `  G )  /\  u  e.  X )  ->  (
( 0g `  G
)  .+  u )  =  u )
3529, 32, 343eqtr3d 2336 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  u  e.  X )  ->  (
( 0g `  H
) F u )  =  u )
367ad2antrr 706 . . . . . . . . . 10  |-  ( ( ( Y  e.  (SubGrp `  G )  /\  u  e.  X )  /\  (
v  e.  Y  /\  w  e.  Y )
)  ->  G  e.  Grp )
379ad2antrr 706 . . . . . . . . . . 11  |-  ( ( ( Y  e.  (SubGrp `  G )  /\  u  e.  X )  /\  (
v  e.  Y  /\  w  e.  Y )
)  ->  Y  C_  X
)
38 simprl 732 . . . . . . . . . . 11  |-  ( ( ( Y  e.  (SubGrp `  G )  /\  u  e.  X )  /\  (
v  e.  Y  /\  w  e.  Y )
)  ->  v  e.  Y )
3937, 38sseldd 3194 . . . . . . . . . 10  |-  ( ( ( Y  e.  (SubGrp `  G )  /\  u  e.  X )  /\  (
v  e.  Y  /\  w  e.  Y )
)  ->  v  e.  X )
40 simprr 733 . . . . . . . . . . 11  |-  ( ( ( Y  e.  (SubGrp `  G )  /\  u  e.  X )  /\  (
v  e.  Y  /\  w  e.  Y )
)  ->  w  e.  Y )
4137, 40sseldd 3194 . . . . . . . . . 10  |-  ( ( ( Y  e.  (SubGrp `  G )  /\  u  e.  X )  /\  (
v  e.  Y  /\  w  e.  Y )
)  ->  w  e.  X )
42 simplr 731 . . . . . . . . . 10  |-  ( ( ( Y  e.  (SubGrp `  G )  /\  u  e.  X )  /\  (
v  e.  Y  /\  w  e.  Y )
)  ->  u  e.  X )
433, 13grpass 14512 . . . . . . . . . 10  |-  ( ( G  e.  Grp  /\  ( v  e.  X  /\  w  e.  X  /\  u  e.  X
) )  ->  (
( v  .+  w
)  .+  u )  =  ( v  .+  ( w  .+  u ) ) )
4436, 39, 41, 42, 43syl13anc 1184 . . . . . . . . 9  |-  ( ( ( Y  e.  (SubGrp `  G )  /\  u  e.  X )  /\  (
v  e.  Y  /\  w  e.  Y )
)  ->  ( (
v  .+  w )  .+  u )  =  ( v  .+  ( w 
.+  u ) ) )
453, 13grpcl 14511 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  w  e.  X  /\  u  e.  X )  ->  ( w  .+  u
)  e.  X )
4636, 41, 42, 45syl3anc 1182 . . . . . . . . . 10  |-  ( ( ( Y  e.  (SubGrp `  G )  /\  u  e.  X )  /\  (
v  e.  Y  /\  w  e.  Y )
)  ->  ( w  .+  u )  e.  X
)
47 oveq12 5883 . . . . . . . . . . 11  |-  ( ( x  =  v  /\  y  =  ( w  .+  u ) )  -> 
( x  .+  y
)  =  ( v 
.+  ( w  .+  u ) ) )
48 ovex 5899 . . . . . . . . . . 11  |-  ( v 
.+  ( w  .+  u ) )  e. 
_V
4947, 17, 48ovmpt2a 5994 . . . . . . . . . 10  |-  ( ( v  e.  Y  /\  ( w  .+  u )  e.  X )  -> 
( v F ( w  .+  u ) )  =  ( v 
.+  ( w  .+  u ) ) )
5038, 46, 49syl2anc 642 . . . . . . . . 9  |-  ( ( ( Y  e.  (SubGrp `  G )  /\  u  e.  X )  /\  (
v  e.  Y  /\  w  e.  Y )
)  ->  ( v F ( w  .+  u ) )  =  ( v  .+  (
w  .+  u )
) )
5144, 50eqtr4d 2331 . . . . . . . 8  |-  ( ( ( Y  e.  (SubGrp `  G )  /\  u  e.  X )  /\  (
v  e.  Y  /\  w  e.  Y )
)  ->  ( (
v  .+  w )  .+  u )  =  ( v F ( w 
.+  u ) ) )
5213subgcl 14647 . . . . . . . . . . 11  |-  ( ( Y  e.  (SubGrp `  G )  /\  v  e.  Y  /\  w  e.  Y )  ->  (
v  .+  w )  e.  Y )
53523expb 1152 . . . . . . . . . 10  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
v  e.  Y  /\  w  e.  Y )
)  ->  ( v  .+  w )  e.  Y
)
5453adantlr 695 . . . . . . . . 9  |-  ( ( ( Y  e.  (SubGrp `  G )  /\  u  e.  X )  /\  (
v  e.  Y  /\  w  e.  Y )
)  ->  ( v  .+  w )  e.  Y
)
55 oveq12 5883 . . . . . . . . . 10  |-  ( ( x  =  ( v 
.+  w )  /\  y  =  u )  ->  ( x  .+  y
)  =  ( ( v  .+  w ) 
.+  u ) )
56 ovex 5899 . . . . . . . . . 10  |-  ( ( v  .+  w ) 
.+  u )  e. 
_V
5755, 17, 56ovmpt2a 5994 . . . . . . . . 9  |-  ( ( ( v  .+  w
)  e.  Y  /\  u  e.  X )  ->  ( ( v  .+  w ) F u )  =  ( ( v  .+  w ) 
.+  u ) )
5854, 42, 57syl2anc 642 . . . . . . . 8  |-  ( ( ( Y  e.  (SubGrp `  G )  /\  u  e.  X )  /\  (
v  e.  Y  /\  w  e.  Y )
)  ->  ( (
v  .+  w ) F u )  =  ( ( v  .+  w )  .+  u
) )
59 oveq12 5883 . . . . . . . . . . 11  |-  ( ( x  =  w  /\  y  =  u )  ->  ( x  .+  y
)  =  ( w 
.+  u ) )
60 ovex 5899 . . . . . . . . . . 11  |-  ( w 
.+  u )  e. 
_V
6159, 17, 60ovmpt2a 5994 . . . . . . . . . 10  |-  ( ( w  e.  Y  /\  u  e.  X )  ->  ( w F u )  =  ( w 
.+  u ) )
6240, 42, 61syl2anc 642 . . . . . . . . 9  |-  ( ( ( Y  e.  (SubGrp `  G )  /\  u  e.  X )  /\  (
v  e.  Y  /\  w  e.  Y )
)  ->  ( w F u )  =  ( w  .+  u
) )
6362oveq2d 5890 . . . . . . . 8  |-  ( ( ( Y  e.  (SubGrp `  G )  /\  u  e.  X )  /\  (
v  e.  Y  /\  w  e.  Y )
)  ->  ( v F ( w F u ) )  =  ( v F ( w  .+  u ) ) )
6451, 58, 633eqtr4d 2338 . . . . . . 7  |-  ( ( ( Y  e.  (SubGrp `  G )  /\  u  e.  X )  /\  (
v  e.  Y  /\  w  e.  Y )
)  ->  ( (
v  .+  w ) F u )  =  ( v F ( w F u ) ) )
6564ralrimivva 2648 . . . . . 6  |-  ( ( Y  e.  (SubGrp `  G )  /\  u  e.  X )  ->  A. v  e.  Y  A. w  e.  Y  ( (
v  .+  w ) F u )  =  ( v F ( w F u ) ) )
661, 13ressplusg 13266 . . . . . . . . . . . 12  |-  ( Y  e.  (SubGrp `  G
)  ->  .+  =  ( +g  `  H ) )
6766oveqd 5891 . . . . . . . . . . 11  |-  ( Y  e.  (SubGrp `  G
)  ->  ( v  .+  w )  =  ( v ( +g  `  H
) w ) )
6867oveq1d 5889 . . . . . . . . . 10  |-  ( Y  e.  (SubGrp `  G
)  ->  ( (
v  .+  w ) F u )  =  ( ( v ( +g  `  H ) w ) F u ) )
6968eqeq1d 2304 . . . . . . . . 9  |-  ( Y  e.  (SubGrp `  G
)  ->  ( (
( v  .+  w
) F u )  =  ( v F ( w F u ) )  <->  ( (
v ( +g  `  H
) w ) F u )  =  ( v F ( w F u ) ) ) )
7020, 69raleqbidv 2761 . . . . . . . 8  |-  ( Y  e.  (SubGrp `  G
)  ->  ( A. w  e.  Y  (
( v  .+  w
) F u )  =  ( v F ( w F u ) )  <->  A. w  e.  ( Base `  H
) ( ( v ( +g  `  H
) w ) F u )  =  ( v F ( w F u ) ) ) )
7120, 70raleqbidv 2761 . . . . . . 7  |-  ( Y  e.  (SubGrp `  G
)  ->  ( A. v  e.  Y  A. w  e.  Y  (
( v  .+  w
) F u )  =  ( v F ( w F u ) )  <->  A. v  e.  ( Base `  H
) A. w  e.  ( Base `  H
) ( ( v ( +g  `  H
) w ) F u )  =  ( v F ( w F u ) ) ) )
7271biimpa 470 . . . . . 6  |-  ( ( Y  e.  (SubGrp `  G )  /\  A. v  e.  Y  A. w  e.  Y  (
( v  .+  w
) F u )  =  ( v F ( w F u ) ) )  ->  A. v  e.  ( Base `  H ) A. w  e.  ( Base `  H ) ( ( v ( +g  `  H
) w ) F u )  =  ( v F ( w F u ) ) )
7365, 72syldan 456 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  u  e.  X )  ->  A. v  e.  ( Base `  H
) A. w  e.  ( Base `  H
) ( ( v ( +g  `  H
) w ) F u )  =  ( v F ( w F u ) ) )
7435, 73jca 518 . . . 4  |-  ( ( Y  e.  (SubGrp `  G )  /\  u  e.  X )  ->  (
( ( 0g `  H ) F u )  =  u  /\  A. v  e.  ( Base `  H ) A. w  e.  ( Base `  H
) ( ( v ( +g  `  H
) w ) F u )  =  ( v F ( w F u ) ) ) )
7574ralrimiva 2639 . . 3  |-  ( Y  e.  (SubGrp `  G
)  ->  A. u  e.  X  ( (
( 0g `  H
) F u )  =  u  /\  A. v  e.  ( Base `  H ) A. w  e.  ( Base `  H
) ( ( v ( +g  `  H
) w ) F u )  =  ( v F ( w F u ) ) ) )
7623, 75jca 518 . 2  |-  ( Y  e.  (SubGrp `  G
)  ->  ( F : ( ( Base `  H )  X.  X
) --> X  /\  A. u  e.  X  (
( ( 0g `  H ) F u )  =  u  /\  A. v  e.  ( Base `  H ) A. w  e.  ( Base `  H
) ( ( v ( +g  `  H
) w ) F u )  =  ( v F ( w F u ) ) ) ) )
77 eqid 2296 . . 3  |-  ( Base `  H )  =  (
Base `  H )
78 eqid 2296 . . 3  |-  ( +g  `  H )  =  ( +g  `  H )
79 eqid 2296 . . 3  |-  ( 0g
`  H )  =  ( 0g `  H
)
8077, 78, 79isga 14761 . 2  |-  ( F  e.  ( H  GrpAct  X )  <->  ( ( H  e.  Grp  /\  X  e.  _V )  /\  ( F : ( ( Base `  H )  X.  X
) --> X  /\  A. u  e.  X  (
( ( 0g `  H ) F u )  =  u  /\  A. v  e.  ( Base `  H ) A. w  e.  ( Base `  H
) ( ( v ( +g  `  H
) w ) F u )  =  ( v F ( w F u ) ) ) ) ) )
816, 76, 80sylanbrc 645 1  |-  ( Y  e.  (SubGrp `  G
)  ->  F  e.  ( H  GrpAct  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556   _Vcvv 2801    C_ wss 3165    X. cxp 4703   -->wf 5267   ` cfv 5271  (class class class)co 5874    e. cmpt2 5876   Basecbs 13164   ↾s cress 13165   +g cplusg 13224   0gc0g 13416   Grpcgrp 14378  SubGrpcsubg 14631    GrpAct cga 14759
This theorem is referenced by:  gaid2  14773
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-map 6790  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-2 9820  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-0g 13420  df-mnd 14383  df-grp 14505  df-subg 14634  df-ga 14760
  Copyright terms: Public domain W3C validator