MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgint Structured version   Unicode version

Theorem subgint 14956
Description: The intersection of a nonempty collection of subgroups is a subgroup. (Contributed by Mario Carneiro, 7-Dec-2014.)
Assertion
Ref Expression
subgint  |-  ( ( S  C_  (SubGrp `  G
)  /\  S  =/=  (/) )  ->  |^| S  e.  (SubGrp `  G )
)

Proof of Theorem subgint
Dummy variables  x  g  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 intssuni 4064 . . . 4  |-  ( S  =/=  (/)  ->  |^| S  C_  U. S )
21adantl 453 . . 3  |-  ( ( S  C_  (SubGrp `  G
)  /\  S  =/=  (/) )  ->  |^| S  C_  U. S )
3 ssel2 3335 . . . . . . 7  |-  ( ( S  C_  (SubGrp `  G
)  /\  g  e.  S )  ->  g  e.  (SubGrp `  G )
)
43adantlr 696 . . . . . 6  |-  ( ( ( S  C_  (SubGrp `  G )  /\  S  =/=  (/) )  /\  g  e.  S )  ->  g  e.  (SubGrp `  G )
)
5 eqid 2435 . . . . . . 7  |-  ( Base `  G )  =  (
Base `  G )
65subgss 14937 . . . . . 6  |-  ( g  e.  (SubGrp `  G
)  ->  g  C_  ( Base `  G )
)
74, 6syl 16 . . . . 5  |-  ( ( ( S  C_  (SubGrp `  G )  /\  S  =/=  (/) )  /\  g  e.  S )  ->  g  C_  ( Base `  G
) )
87ralrimiva 2781 . . . 4  |-  ( ( S  C_  (SubGrp `  G
)  /\  S  =/=  (/) )  ->  A. g  e.  S  g  C_  ( Base `  G )
)
9 unissb 4037 . . . 4  |-  ( U. S  C_  ( Base `  G
)  <->  A. g  e.  S  g  C_  ( Base `  G
) )
108, 9sylibr 204 . . 3  |-  ( ( S  C_  (SubGrp `  G
)  /\  S  =/=  (/) )  ->  U. S  C_  ( Base `  G )
)
112, 10sstrd 3350 . 2  |-  ( ( S  C_  (SubGrp `  G
)  /\  S  =/=  (/) )  ->  |^| S  C_  ( Base `  G )
)
12 eqid 2435 . . . . . . 7  |-  ( 0g
`  G )  =  ( 0g `  G
)
1312subg0cl 14944 . . . . . 6  |-  ( g  e.  (SubGrp `  G
)  ->  ( 0g `  G )  e.  g )
144, 13syl 16 . . . . 5  |-  ( ( ( S  C_  (SubGrp `  G )  /\  S  =/=  (/) )  /\  g  e.  S )  ->  ( 0g `  G )  e.  g )
1514ralrimiva 2781 . . . 4  |-  ( ( S  C_  (SubGrp `  G
)  /\  S  =/=  (/) )  ->  A. g  e.  S  ( 0g `  G )  e.  g )
16 fvex 5734 . . . . 5  |-  ( 0g
`  G )  e. 
_V
1716elint2 4049 . . . 4  |-  ( ( 0g `  G )  e.  |^| S  <->  A. g  e.  S  ( 0g `  G )  e.  g )
1815, 17sylibr 204 . . 3  |-  ( ( S  C_  (SubGrp `  G
)  /\  S  =/=  (/) )  ->  ( 0g `  G )  e.  |^| S )
19 ne0i 3626 . . 3  |-  ( ( 0g `  G )  e.  |^| S  ->  |^| S  =/=  (/) )
2018, 19syl 16 . 2  |-  ( ( S  C_  (SubGrp `  G
)  /\  S  =/=  (/) )  ->  |^| S  =/=  (/) )
214adantlr 696 . . . . . . . . 9  |-  ( ( ( ( S  C_  (SubGrp `  G )  /\  S  =/=  (/) )  /\  (
x  e.  |^| S  /\  y  e.  |^| S
) )  /\  g  e.  S )  ->  g  e.  (SubGrp `  G )
)
22 simprl 733 . . . . . . . . . 10  |-  ( ( ( S  C_  (SubGrp `  G )  /\  S  =/=  (/) )  /\  (
x  e.  |^| S  /\  y  e.  |^| S
) )  ->  x  e.  |^| S )
23 elinti 4051 . . . . . . . . . . 11  |-  ( x  e.  |^| S  ->  (
g  e.  S  ->  x  e.  g )
)
2423imp 419 . . . . . . . . . 10  |-  ( ( x  e.  |^| S  /\  g  e.  S
)  ->  x  e.  g )
2522, 24sylan 458 . . . . . . . . 9  |-  ( ( ( ( S  C_  (SubGrp `  G )  /\  S  =/=  (/) )  /\  (
x  e.  |^| S  /\  y  e.  |^| S
) )  /\  g  e.  S )  ->  x  e.  g )
26 simprr 734 . . . . . . . . . 10  |-  ( ( ( S  C_  (SubGrp `  G )  /\  S  =/=  (/) )  /\  (
x  e.  |^| S  /\  y  e.  |^| S
) )  ->  y  e.  |^| S )
27 elinti 4051 . . . . . . . . . . 11  |-  ( y  e.  |^| S  ->  (
g  e.  S  -> 
y  e.  g ) )
2827imp 419 . . . . . . . . . 10  |-  ( ( y  e.  |^| S  /\  g  e.  S
)  ->  y  e.  g )
2926, 28sylan 458 . . . . . . . . 9  |-  ( ( ( ( S  C_  (SubGrp `  G )  /\  S  =/=  (/) )  /\  (
x  e.  |^| S  /\  y  e.  |^| S
) )  /\  g  e.  S )  ->  y  e.  g )
30 eqid 2435 . . . . . . . . . 10  |-  ( +g  `  G )  =  ( +g  `  G )
3130subgcl 14946 . . . . . . . . 9  |-  ( ( g  e.  (SubGrp `  G )  /\  x  e.  g  /\  y  e.  g )  ->  (
x ( +g  `  G
) y )  e.  g )
3221, 25, 29, 31syl3anc 1184 . . . . . . . 8  |-  ( ( ( ( S  C_  (SubGrp `  G )  /\  S  =/=  (/) )  /\  (
x  e.  |^| S  /\  y  e.  |^| S
) )  /\  g  e.  S )  ->  (
x ( +g  `  G
) y )  e.  g )
3332ralrimiva 2781 . . . . . . 7  |-  ( ( ( S  C_  (SubGrp `  G )  /\  S  =/=  (/) )  /\  (
x  e.  |^| S  /\  y  e.  |^| S
) )  ->  A. g  e.  S  ( x
( +g  `  G ) y )  e.  g )
34 ovex 6098 . . . . . . . 8  |-  ( x ( +g  `  G
) y )  e. 
_V
3534elint2 4049 . . . . . . 7  |-  ( ( x ( +g  `  G
) y )  e. 
|^| S  <->  A. g  e.  S  ( x
( +g  `  G ) y )  e.  g )
3633, 35sylibr 204 . . . . . 6  |-  ( ( ( S  C_  (SubGrp `  G )  /\  S  =/=  (/) )  /\  (
x  e.  |^| S  /\  y  e.  |^| S
) )  ->  (
x ( +g  `  G
) y )  e. 
|^| S )
3736anassrs 630 . . . . 5  |-  ( ( ( ( S  C_  (SubGrp `  G )  /\  S  =/=  (/) )  /\  x  e.  |^| S )  /\  y  e.  |^| S )  ->  ( x ( +g  `  G ) y )  e.  |^| S )
3837ralrimiva 2781 . . . 4  |-  ( ( ( S  C_  (SubGrp `  G )  /\  S  =/=  (/) )  /\  x  e.  |^| S )  ->  A. y  e.  |^| S
( x ( +g  `  G ) y )  e.  |^| S )
394adantlr 696 . . . . . . 7  |-  ( ( ( ( S  C_  (SubGrp `  G )  /\  S  =/=  (/) )  /\  x  e.  |^| S )  /\  g  e.  S )  ->  g  e.  (SubGrp `  G ) )
4024adantll 695 . . . . . . 7  |-  ( ( ( ( S  C_  (SubGrp `  G )  /\  S  =/=  (/) )  /\  x  e.  |^| S )  /\  g  e.  S )  ->  x  e.  g )
41 eqid 2435 . . . . . . . 8  |-  ( inv g `  G )  =  ( inv g `  G )
4241subginvcl 14945 . . . . . . 7  |-  ( ( g  e.  (SubGrp `  G )  /\  x  e.  g )  ->  (
( inv g `  G ) `  x
)  e.  g )
4339, 40, 42syl2anc 643 . . . . . 6  |-  ( ( ( ( S  C_  (SubGrp `  G )  /\  S  =/=  (/) )  /\  x  e.  |^| S )  /\  g  e.  S )  ->  ( ( inv g `  G ) `  x
)  e.  g )
4443ralrimiva 2781 . . . . 5  |-  ( ( ( S  C_  (SubGrp `  G )  /\  S  =/=  (/) )  /\  x  e.  |^| S )  ->  A. g  e.  S  ( ( inv g `  G ) `  x
)  e.  g )
45 fvex 5734 . . . . . 6  |-  ( ( inv g `  G
) `  x )  e.  _V
4645elint2 4049 . . . . 5  |-  ( ( ( inv g `  G ) `  x
)  e.  |^| S  <->  A. g  e.  S  ( ( inv g `  G ) `  x
)  e.  g )
4744, 46sylibr 204 . . . 4  |-  ( ( ( S  C_  (SubGrp `  G )  /\  S  =/=  (/) )  /\  x  e.  |^| S )  -> 
( ( inv g `  G ) `  x
)  e.  |^| S
)
4838, 47jca 519 . . 3  |-  ( ( ( S  C_  (SubGrp `  G )  /\  S  =/=  (/) )  /\  x  e.  |^| S )  -> 
( A. y  e. 
|^| S ( x ( +g  `  G
) y )  e. 
|^| S  /\  (
( inv g `  G ) `  x
)  e.  |^| S
) )
4948ralrimiva 2781 . 2  |-  ( ( S  C_  (SubGrp `  G
)  /\  S  =/=  (/) )  ->  A. x  e.  |^| S ( A. y  e.  |^| S ( x ( +g  `  G
) y )  e. 
|^| S  /\  (
( inv g `  G ) `  x
)  e.  |^| S
) )
50 ssn0 3652 . . 3  |-  ( ( S  C_  (SubGrp `  G
)  /\  S  =/=  (/) )  ->  (SubGrp `  G
)  =/=  (/) )
51 n0 3629 . . . 4  |-  ( (SubGrp `  G )  =/=  (/)  <->  E. g 
g  e.  (SubGrp `  G ) )
52 subgrcl 14941 . . . . 5  |-  ( g  e.  (SubGrp `  G
)  ->  G  e.  Grp )
5352exlimiv 1644 . . . 4  |-  ( E. g  g  e.  (SubGrp `  G )  ->  G  e.  Grp )
5451, 53sylbi 188 . . 3  |-  ( (SubGrp `  G )  =/=  (/)  ->  G  e.  Grp )
555, 30, 41issubg2 14951 . . 3  |-  ( G  e.  Grp  ->  ( |^| S  e.  (SubGrp `  G )  <->  ( |^| S  C_  ( Base `  G
)  /\  |^| S  =/=  (/)  /\  A. x  e. 
|^| S ( A. y  e.  |^| S ( x ( +g  `  G
) y )  e. 
|^| S  /\  (
( inv g `  G ) `  x
)  e.  |^| S
) ) ) )
5650, 54, 553syl 19 . 2  |-  ( ( S  C_  (SubGrp `  G
)  /\  S  =/=  (/) )  ->  ( |^| S  e.  (SubGrp `  G
)  <->  ( |^| S  C_  ( Base `  G
)  /\  |^| S  =/=  (/)  /\  A. x  e. 
|^| S ( A. y  e.  |^| S ( x ( +g  `  G
) y )  e. 
|^| S  /\  (
( inv g `  G ) `  x
)  e.  |^| S
) ) ) )
5711, 20, 49, 56mpbir3and 1137 1  |-  ( ( S  C_  (SubGrp `  G
)  /\  S  =/=  (/) )  ->  |^| S  e.  (SubGrp `  G )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936   E.wex 1550    e. wcel 1725    =/= wne 2598   A.wral 2697    C_ wss 3312   (/)c0 3620   U.cuni 4007   |^|cint 4042   ` cfv 5446  (class class class)co 6073   Basecbs 13461   +g cplusg 13521   0gc0g 13715   Grpcgrp 14677   inv gcminusg 14678  SubGrpcsubg 14930
This theorem is referenced by:  subrgint  15882
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-riota 6541  df-recs 6625  df-rdg 6660  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-nn 9993  df-2 10050  df-ndx 13464  df-slot 13465  df-base 13466  df-sets 13467  df-ress 13468  df-plusg 13534  df-0g 13719  df-mnd 14682  df-grp 14804  df-minusg 14805  df-subg 14933
  Copyright terms: Public domain W3C validator