MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgint Unicode version

Theorem subgint 14891
Description: The intersection of a nonempty collection of subgroups is a subgroup. (Contributed by Mario Carneiro, 7-Dec-2014.)
Assertion
Ref Expression
subgint  |-  ( ( S  C_  (SubGrp `  G
)  /\  S  =/=  (/) )  ->  |^| S  e.  (SubGrp `  G )
)

Proof of Theorem subgint
Dummy variables  x  g  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 intssuni 4014 . . . 4  |-  ( S  =/=  (/)  ->  |^| S  C_  U. S )
21adantl 453 . . 3  |-  ( ( S  C_  (SubGrp `  G
)  /\  S  =/=  (/) )  ->  |^| S  C_  U. S )
3 ssel2 3286 . . . . . . 7  |-  ( ( S  C_  (SubGrp `  G
)  /\  g  e.  S )  ->  g  e.  (SubGrp `  G )
)
43adantlr 696 . . . . . 6  |-  ( ( ( S  C_  (SubGrp `  G )  /\  S  =/=  (/) )  /\  g  e.  S )  ->  g  e.  (SubGrp `  G )
)
5 eqid 2387 . . . . . . 7  |-  ( Base `  G )  =  (
Base `  G )
65subgss 14872 . . . . . 6  |-  ( g  e.  (SubGrp `  G
)  ->  g  C_  ( Base `  G )
)
74, 6syl 16 . . . . 5  |-  ( ( ( S  C_  (SubGrp `  G )  /\  S  =/=  (/) )  /\  g  e.  S )  ->  g  C_  ( Base `  G
) )
87ralrimiva 2732 . . . 4  |-  ( ( S  C_  (SubGrp `  G
)  /\  S  =/=  (/) )  ->  A. g  e.  S  g  C_  ( Base `  G )
)
9 unissb 3987 . . . 4  |-  ( U. S  C_  ( Base `  G
)  <->  A. g  e.  S  g  C_  ( Base `  G
) )
108, 9sylibr 204 . . 3  |-  ( ( S  C_  (SubGrp `  G
)  /\  S  =/=  (/) )  ->  U. S  C_  ( Base `  G )
)
112, 10sstrd 3301 . 2  |-  ( ( S  C_  (SubGrp `  G
)  /\  S  =/=  (/) )  ->  |^| S  C_  ( Base `  G )
)
12 eqid 2387 . . . . . . 7  |-  ( 0g
`  G )  =  ( 0g `  G
)
1312subg0cl 14879 . . . . . 6  |-  ( g  e.  (SubGrp `  G
)  ->  ( 0g `  G )  e.  g )
144, 13syl 16 . . . . 5  |-  ( ( ( S  C_  (SubGrp `  G )  /\  S  =/=  (/) )  /\  g  e.  S )  ->  ( 0g `  G )  e.  g )
1514ralrimiva 2732 . . . 4  |-  ( ( S  C_  (SubGrp `  G
)  /\  S  =/=  (/) )  ->  A. g  e.  S  ( 0g `  G )  e.  g )
16 fvex 5682 . . . . 5  |-  ( 0g
`  G )  e. 
_V
1716elint2 3999 . . . 4  |-  ( ( 0g `  G )  e.  |^| S  <->  A. g  e.  S  ( 0g `  G )  e.  g )
1815, 17sylibr 204 . . 3  |-  ( ( S  C_  (SubGrp `  G
)  /\  S  =/=  (/) )  ->  ( 0g `  G )  e.  |^| S )
19 ne0i 3577 . . 3  |-  ( ( 0g `  G )  e.  |^| S  ->  |^| S  =/=  (/) )
2018, 19syl 16 . 2  |-  ( ( S  C_  (SubGrp `  G
)  /\  S  =/=  (/) )  ->  |^| S  =/=  (/) )
214adantlr 696 . . . . . . . . 9  |-  ( ( ( ( S  C_  (SubGrp `  G )  /\  S  =/=  (/) )  /\  (
x  e.  |^| S  /\  y  e.  |^| S
) )  /\  g  e.  S )  ->  g  e.  (SubGrp `  G )
)
22 simprl 733 . . . . . . . . . 10  |-  ( ( ( S  C_  (SubGrp `  G )  /\  S  =/=  (/) )  /\  (
x  e.  |^| S  /\  y  e.  |^| S
) )  ->  x  e.  |^| S )
23 elinti 4001 . . . . . . . . . . 11  |-  ( x  e.  |^| S  ->  (
g  e.  S  ->  x  e.  g )
)
2423imp 419 . . . . . . . . . 10  |-  ( ( x  e.  |^| S  /\  g  e.  S
)  ->  x  e.  g )
2522, 24sylan 458 . . . . . . . . 9  |-  ( ( ( ( S  C_  (SubGrp `  G )  /\  S  =/=  (/) )  /\  (
x  e.  |^| S  /\  y  e.  |^| S
) )  /\  g  e.  S )  ->  x  e.  g )
26 simprr 734 . . . . . . . . . 10  |-  ( ( ( S  C_  (SubGrp `  G )  /\  S  =/=  (/) )  /\  (
x  e.  |^| S  /\  y  e.  |^| S
) )  ->  y  e.  |^| S )
27 elinti 4001 . . . . . . . . . . 11  |-  ( y  e.  |^| S  ->  (
g  e.  S  -> 
y  e.  g ) )
2827imp 419 . . . . . . . . . 10  |-  ( ( y  e.  |^| S  /\  g  e.  S
)  ->  y  e.  g )
2926, 28sylan 458 . . . . . . . . 9  |-  ( ( ( ( S  C_  (SubGrp `  G )  /\  S  =/=  (/) )  /\  (
x  e.  |^| S  /\  y  e.  |^| S
) )  /\  g  e.  S )  ->  y  e.  g )
30 eqid 2387 . . . . . . . . . 10  |-  ( +g  `  G )  =  ( +g  `  G )
3130subgcl 14881 . . . . . . . . 9  |-  ( ( g  e.  (SubGrp `  G )  /\  x  e.  g  /\  y  e.  g )  ->  (
x ( +g  `  G
) y )  e.  g )
3221, 25, 29, 31syl3anc 1184 . . . . . . . 8  |-  ( ( ( ( S  C_  (SubGrp `  G )  /\  S  =/=  (/) )  /\  (
x  e.  |^| S  /\  y  e.  |^| S
) )  /\  g  e.  S )  ->  (
x ( +g  `  G
) y )  e.  g )
3332ralrimiva 2732 . . . . . . 7  |-  ( ( ( S  C_  (SubGrp `  G )  /\  S  =/=  (/) )  /\  (
x  e.  |^| S  /\  y  e.  |^| S
) )  ->  A. g  e.  S  ( x
( +g  `  G ) y )  e.  g )
34 ovex 6045 . . . . . . . 8  |-  ( x ( +g  `  G
) y )  e. 
_V
3534elint2 3999 . . . . . . 7  |-  ( ( x ( +g  `  G
) y )  e. 
|^| S  <->  A. g  e.  S  ( x
( +g  `  G ) y )  e.  g )
3633, 35sylibr 204 . . . . . 6  |-  ( ( ( S  C_  (SubGrp `  G )  /\  S  =/=  (/) )  /\  (
x  e.  |^| S  /\  y  e.  |^| S
) )  ->  (
x ( +g  `  G
) y )  e. 
|^| S )
3736anassrs 630 . . . . 5  |-  ( ( ( ( S  C_  (SubGrp `  G )  /\  S  =/=  (/) )  /\  x  e.  |^| S )  /\  y  e.  |^| S )  ->  ( x ( +g  `  G ) y )  e.  |^| S )
3837ralrimiva 2732 . . . 4  |-  ( ( ( S  C_  (SubGrp `  G )  /\  S  =/=  (/) )  /\  x  e.  |^| S )  ->  A. y  e.  |^| S
( x ( +g  `  G ) y )  e.  |^| S )
394adantlr 696 . . . . . . 7  |-  ( ( ( ( S  C_  (SubGrp `  G )  /\  S  =/=  (/) )  /\  x  e.  |^| S )  /\  g  e.  S )  ->  g  e.  (SubGrp `  G ) )
4024adantll 695 . . . . . . 7  |-  ( ( ( ( S  C_  (SubGrp `  G )  /\  S  =/=  (/) )  /\  x  e.  |^| S )  /\  g  e.  S )  ->  x  e.  g )
41 eqid 2387 . . . . . . . 8  |-  ( inv g `  G )  =  ( inv g `  G )
4241subginvcl 14880 . . . . . . 7  |-  ( ( g  e.  (SubGrp `  G )  /\  x  e.  g )  ->  (
( inv g `  G ) `  x
)  e.  g )
4339, 40, 42syl2anc 643 . . . . . 6  |-  ( ( ( ( S  C_  (SubGrp `  G )  /\  S  =/=  (/) )  /\  x  e.  |^| S )  /\  g  e.  S )  ->  ( ( inv g `  G ) `  x
)  e.  g )
4443ralrimiva 2732 . . . . 5  |-  ( ( ( S  C_  (SubGrp `  G )  /\  S  =/=  (/) )  /\  x  e.  |^| S )  ->  A. g  e.  S  ( ( inv g `  G ) `  x
)  e.  g )
45 fvex 5682 . . . . . 6  |-  ( ( inv g `  G
) `  x )  e.  _V
4645elint2 3999 . . . . 5  |-  ( ( ( inv g `  G ) `  x
)  e.  |^| S  <->  A. g  e.  S  ( ( inv g `  G ) `  x
)  e.  g )
4744, 46sylibr 204 . . . 4  |-  ( ( ( S  C_  (SubGrp `  G )  /\  S  =/=  (/) )  /\  x  e.  |^| S )  -> 
( ( inv g `  G ) `  x
)  e.  |^| S
)
4838, 47jca 519 . . 3  |-  ( ( ( S  C_  (SubGrp `  G )  /\  S  =/=  (/) )  /\  x  e.  |^| S )  -> 
( A. y  e. 
|^| S ( x ( +g  `  G
) y )  e. 
|^| S  /\  (
( inv g `  G ) `  x
)  e.  |^| S
) )
4948ralrimiva 2732 . 2  |-  ( ( S  C_  (SubGrp `  G
)  /\  S  =/=  (/) )  ->  A. x  e.  |^| S ( A. y  e.  |^| S ( x ( +g  `  G
) y )  e. 
|^| S  /\  (
( inv g `  G ) `  x
)  e.  |^| S
) )
50 ssn0 3603 . . 3  |-  ( ( S  C_  (SubGrp `  G
)  /\  S  =/=  (/) )  ->  (SubGrp `  G
)  =/=  (/) )
51 n0 3580 . . . 4  |-  ( (SubGrp `  G )  =/=  (/)  <->  E. g 
g  e.  (SubGrp `  G ) )
52 subgrcl 14876 . . . . 5  |-  ( g  e.  (SubGrp `  G
)  ->  G  e.  Grp )
5352exlimiv 1641 . . . 4  |-  ( E. g  g  e.  (SubGrp `  G )  ->  G  e.  Grp )
5451, 53sylbi 188 . . 3  |-  ( (SubGrp `  G )  =/=  (/)  ->  G  e.  Grp )
555, 30, 41issubg2 14886 . . 3  |-  ( G  e.  Grp  ->  ( |^| S  e.  (SubGrp `  G )  <->  ( |^| S  C_  ( Base `  G
)  /\  |^| S  =/=  (/)  /\  A. x  e. 
|^| S ( A. y  e.  |^| S ( x ( +g  `  G
) y )  e. 
|^| S  /\  (
( inv g `  G ) `  x
)  e.  |^| S
) ) ) )
5650, 54, 553syl 19 . 2  |-  ( ( S  C_  (SubGrp `  G
)  /\  S  =/=  (/) )  ->  ( |^| S  e.  (SubGrp `  G
)  <->  ( |^| S  C_  ( Base `  G
)  /\  |^| S  =/=  (/)  /\  A. x  e. 
|^| S ( A. y  e.  |^| S ( x ( +g  `  G
) y )  e. 
|^| S  /\  (
( inv g `  G ) `  x
)  e.  |^| S
) ) ) )
5711, 20, 49, 56mpbir3and 1137 1  |-  ( ( S  C_  (SubGrp `  G
)  /\  S  =/=  (/) )  ->  |^| S  e.  (SubGrp `  G )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936   E.wex 1547    e. wcel 1717    =/= wne 2550   A.wral 2649    C_ wss 3263   (/)c0 3571   U.cuni 3957   |^|cint 3992   ` cfv 5394  (class class class)co 6020   Basecbs 13396   +g cplusg 13456   0gc0g 13650   Grpcgrp 14612   inv gcminusg 14613  SubGrpcsubg 14865
This theorem is referenced by:  subrgint  15817
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-cnex 8979  ax-resscn 8980  ax-1cn 8981  ax-icn 8982  ax-addcl 8983  ax-addrcl 8984  ax-mulcl 8985  ax-mulrcl 8986  ax-mulcom 8987  ax-addass 8988  ax-mulass 8989  ax-distr 8990  ax-i2m1 8991  ax-1ne0 8992  ax-1rid 8993  ax-rnegex 8994  ax-rrecex 8995  ax-cnre 8996  ax-pre-lttri 8997  ax-pre-lttrn 8998  ax-pre-ltadd 8999  ax-pre-mulgt0 9000
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rmo 2657  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-int 3993  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-riota 6485  df-recs 6569  df-rdg 6604  df-er 6841  df-en 7046  df-dom 7047  df-sdom 7048  df-pnf 9055  df-mnf 9056  df-xr 9057  df-ltxr 9058  df-le 9059  df-sub 9225  df-neg 9226  df-nn 9933  df-2 9990  df-ndx 13399  df-slot 13400  df-base 13401  df-sets 13402  df-ress 13403  df-plusg 13469  df-0g 13654  df-mnd 14617  df-grp 14739  df-minusg 14740  df-subg 14868
  Copyright terms: Public domain W3C validator