MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgoinv Structured version   Unicode version

Theorem subgoinv 21896
Description: The inverse of a subgroup element is the same as its inverse in the parent group. (Contributed by Mario Carneiro, 8-Jul-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
subgoinv.1  |-  W  =  ran  H
subgoinv.2  |-  M  =  ( inv `  G
)
subgoinv.3  |-  N  =  ( inv `  H
)
Assertion
Ref Expression
subgoinv  |-  ( ( H  e.  ( SubGrpOp `  G )  /\  A  e.  W )  ->  ( N `  A )  =  ( M `  A ) )

Proof of Theorem subgoinv
StepHypRef Expression
1 issubgo 21891 . . . . . 6  |-  ( H  e.  ( SubGrpOp `  G
)  <->  ( G  e. 
GrpOp  /\  H  e.  GrpOp  /\  H  C_  G )
)
21simp2bi 973 . . . . 5  |-  ( H  e.  ( SubGrpOp `  G
)  ->  H  e.  GrpOp
)
3 subgoinv.1 . . . . . 6  |-  W  =  ran  H
4 eqid 2436 . . . . . 6  |-  (GId `  H )  =  (GId
`  H )
5 subgoinv.3 . . . . . 6  |-  N  =  ( inv `  H
)
63, 4, 5grporinv 21817 . . . . 5  |-  ( ( H  e.  GrpOp  /\  A  e.  W )  ->  ( A H ( N `  A ) )  =  (GId `  H )
)
72, 6sylan 458 . . . 4  |-  ( ( H  e.  ( SubGrpOp `  G )  /\  A  e.  W )  ->  ( A H ( N `  A ) )  =  (GId `  H )
)
8 simpl 444 . . . . 5  |-  ( ( H  e.  ( SubGrpOp `  G )  /\  A  e.  W )  ->  H  e.  ( SubGrpOp `  G )
)
9 simpr 448 . . . . 5  |-  ( ( H  e.  ( SubGrpOp `  G )  /\  A  e.  W )  ->  A  e.  W )
103, 5grpoinvcl 21814 . . . . . 6  |-  ( ( H  e.  GrpOp  /\  A  e.  W )  ->  ( N `  A )  e.  W )
112, 10sylan 458 . . . . 5  |-  ( ( H  e.  ( SubGrpOp `  G )  /\  A  e.  W )  ->  ( N `  A )  e.  W )
123subgoov 21893 . . . . 5  |-  ( ( H  e.  ( SubGrpOp `  G )  /\  ( A  e.  W  /\  ( N `  A )  e.  W ) )  ->  ( A H ( N `  A
) )  =  ( A G ( N `
 A ) ) )
138, 9, 11, 12syl12anc 1182 . . . 4  |-  ( ( H  e.  ( SubGrpOp `  G )  /\  A  e.  W )  ->  ( A H ( N `  A ) )  =  ( A G ( N `  A ) ) )
14 eqid 2436 . . . . . 6  |-  (GId `  G )  =  (GId
`  G )
1514, 4subgoid 21895 . . . . 5  |-  ( H  e.  ( SubGrpOp `  G
)  ->  (GId `  H
)  =  (GId `  G ) )
1615adantr 452 . . . 4  |-  ( ( H  e.  ( SubGrpOp `  G )  /\  A  e.  W )  ->  (GId `  H )  =  (GId
`  G ) )
177, 13, 163eqtr3d 2476 . . 3  |-  ( ( H  e.  ( SubGrpOp `  G )  /\  A  e.  W )  ->  ( A G ( N `  A ) )  =  (GId `  G )
)
181simp1bi 972 . . . . 5  |-  ( H  e.  ( SubGrpOp `  G
)  ->  G  e.  GrpOp
)
1918adantr 452 . . . 4  |-  ( ( H  e.  ( SubGrpOp `  G )  /\  A  e.  W )  ->  G  e.  GrpOp )
20 eqid 2436 . . . . . 6  |-  ran  G  =  ran  G
2120, 3subgornss 21894 . . . . 5  |-  ( H  e.  ( SubGrpOp `  G
)  ->  W  C_  ran  G )
2221sselda 3348 . . . 4  |-  ( ( H  e.  ( SubGrpOp `  G )  /\  A  e.  W )  ->  A  e.  ran  G )
2321adantr 452 . . . . 5  |-  ( ( H  e.  ( SubGrpOp `  G )  /\  A  e.  W )  ->  W  C_ 
ran  G )
2423, 11sseldd 3349 . . . 4  |-  ( ( H  e.  ( SubGrpOp `  G )  /\  A  e.  W )  ->  ( N `  A )  e.  ran  G )
25 subgoinv.2 . . . . 5  |-  M  =  ( inv `  G
)
2620, 14, 25grpoinvid1 21818 . . . 4  |-  ( ( G  e.  GrpOp  /\  A  e.  ran  G  /\  ( N `  A )  e.  ran  G )  -> 
( ( M `  A )  =  ( N `  A )  <-> 
( A G ( N `  A ) )  =  (GId `  G ) ) )
2719, 22, 24, 26syl3anc 1184 . . 3  |-  ( ( H  e.  ( SubGrpOp `  G )  /\  A  e.  W )  ->  (
( M `  A
)  =  ( N `
 A )  <->  ( A G ( N `  A ) )  =  (GId `  G )
) )
2817, 27mpbird 224 . 2  |-  ( ( H  e.  ( SubGrpOp `  G )  /\  A  e.  W )  ->  ( M `  A )  =  ( N `  A ) )
2928eqcomd 2441 1  |-  ( ( H  e.  ( SubGrpOp `  G )  /\  A  e.  W )  ->  ( N `  A )  =  ( M `  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725    C_ wss 3320   ran crn 4879   ` cfv 5454  (class class class)co 6081   GrpOpcgr 21774  GIdcgi 21775   invcgn 21776   SubGrpOpcsubgo 21889
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-riota 6549  df-grpo 21779  df-gid 21780  df-ginv 21781  df-subgo 21890
  Copyright terms: Public domain W3C validator