MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgores Unicode version

Theorem subgores 21024
Description: A subgroup operation is the restriction of its parent group operation to its underlying set. (Contributed by Paul Chapman, 3-Mar-2008.) (New usage is discouraged.)
Hypothesis
Ref Expression
subgores.1  |-  W  =  ran  H
Assertion
Ref Expression
subgores  |-  ( H  e.  ( SubGrpOp `  G
)  ->  H  =  ( G  |`  ( W  X.  W ) ) )

Proof of Theorem subgores
StepHypRef Expression
1 issubgo 21023 . . . . 5  |-  ( H  e.  ( SubGrpOp `  G
)  <->  ( G  e. 
GrpOp  /\  H  e.  GrpOp  /\  H  C_  G )
)
21simp1bi 970 . . . 4  |-  ( H  e.  ( SubGrpOp `  G
)  ->  G  e.  GrpOp
)
3 eqid 2316 . . . . 5  |-  ran  G  =  ran  G
43grpofo 20919 . . . 4  |-  ( G  e.  GrpOp  ->  G :
( ran  G  X.  ran  G ) -onto-> ran  G
)
5 fofun 5490 . . . 4  |-  ( G : ( ran  G  X.  ran  G ) -onto-> ran 
G  ->  Fun  G )
62, 4, 53syl 18 . . 3  |-  ( H  e.  ( SubGrpOp `  G
)  ->  Fun  G )
71simp3bi 972 . . 3  |-  ( H  e.  ( SubGrpOp `  G
)  ->  H  C_  G
)
81simp2bi 971 . . . . 5  |-  ( H  e.  ( SubGrpOp `  G
)  ->  H  e.  GrpOp
)
9 subgores.1 . . . . . 6  |-  W  =  ran  H
109grpofo 20919 . . . . 5  |-  ( H  e.  GrpOp  ->  H :
( W  X.  W
) -onto-> W )
11 fof 5489 . . . . 5  |-  ( H : ( W  X.  W ) -onto-> W  ->  H : ( W  X.  W ) --> W )
128, 10, 113syl 18 . . . 4  |-  ( H  e.  ( SubGrpOp `  G
)  ->  H :
( W  X.  W
) --> W )
13 fdm 5431 . . . 4  |-  ( H : ( W  X.  W ) --> W  ->  dom  H  =  ( W  X.  W ) )
14 eqimss2 3265 . . . 4  |-  ( dom 
H  =  ( W  X.  W )  -> 
( W  X.  W
)  C_  dom  H )
1512, 13, 143syl 18 . . 3  |-  ( H  e.  ( SubGrpOp `  G
)  ->  ( W  X.  W )  C_  dom  H )
16 fun2ssres 5332 . . 3  |-  ( ( Fun  G  /\  H  C_  G  /\  ( W  X.  W )  C_  dom  H )  ->  ( G  |`  ( W  X.  W ) )  =  ( H  |`  ( W  X.  W ) ) )
176, 7, 15, 16syl3anc 1182 . 2  |-  ( H  e.  ( SubGrpOp `  G
)  ->  ( G  |`  ( W  X.  W
) )  =  ( H  |`  ( W  X.  W ) ) )
18 fofn 5491 . . . 4  |-  ( H : ( W  X.  W ) -onto-> W  ->  H  Fn  ( W  X.  W ) )
19 fnresdm 5390 . . . 4  |-  ( H  Fn  ( W  X.  W )  ->  ( H  |`  ( W  X.  W ) )  =  H )
2018, 19syl 15 . . 3  |-  ( H : ( W  X.  W ) -onto-> W  -> 
( H  |`  ( W  X.  W ) )  =  H )
218, 10, 203syl 18 . 2  |-  ( H  e.  ( SubGrpOp `  G
)  ->  ( H  |`  ( W  X.  W
) )  =  H )
2217, 21eqtr2d 2349 1  |-  ( H  e.  ( SubGrpOp `  G
)  ->  H  =  ( G  |`  ( W  X.  W ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1633    e. wcel 1701    C_ wss 3186    X. cxp 4724   dom cdm 4726   ran crn 4727    |` cres 4728   Fun wfun 5286    Fn wfn 5287   -->wf 5288   -onto->wfo 5290   ` cfv 5292   GrpOpcgr 20906   SubGrpOpcsubgo 21021
This theorem is referenced by:  subgoov  21025  subgornss  21026
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-13 1703  ax-14 1705  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297  ax-sep 4178  ax-nul 4186  ax-pow 4225  ax-pr 4251  ax-un 4549
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1533  df-nf 1536  df-sb 1640  df-eu 2180  df-mo 2181  df-clab 2303  df-cleq 2309  df-clel 2312  df-nfc 2441  df-ne 2481  df-ral 2582  df-rex 2583  df-rab 2586  df-v 2824  df-sbc 3026  df-csb 3116  df-dif 3189  df-un 3191  df-in 3193  df-ss 3200  df-nul 3490  df-if 3600  df-pw 3661  df-sn 3680  df-pr 3681  df-op 3683  df-uni 3865  df-iun 3944  df-br 4061  df-opab 4115  df-mpt 4116  df-id 4346  df-xp 4732  df-rel 4733  df-cnv 4734  df-co 4735  df-dm 4736  df-rn 4737  df-res 4738  df-ima 4739  df-iota 5256  df-fun 5294  df-fn 5295  df-f 5296  df-fo 5298  df-fv 5300  df-ov 5903  df-grpo 20911  df-subgo 21022
  Copyright terms: Public domain W3C validator