MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  submre Unicode version

Theorem submre 13789
Description: The subcollection of a closed set system below a given closed set is itself a closed set system. (Contributed by Stefan O'Rear, 9-Mar-2015.)
Assertion
Ref Expression
submre  |-  ( ( C  e.  (Moore `  X )  /\  A  e.  C )  ->  ( C  i^i  ~P A )  e.  (Moore `  A
) )

Proof of Theorem submre
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 inss2 3526 . . 3  |-  ( C  i^i  ~P A ) 
C_  ~P A
21a1i 11 . 2  |-  ( ( C  e.  (Moore `  X )  /\  A  e.  C )  ->  ( C  i^i  ~P A ) 
C_  ~P A )
3 simpr 448 . . 3  |-  ( ( C  e.  (Moore `  X )  /\  A  e.  C )  ->  A  e.  C )
4 pwidg 3775 . . . 4  |-  ( A  e.  C  ->  A  e.  ~P A )
54adantl 453 . . 3  |-  ( ( C  e.  (Moore `  X )  /\  A  e.  C )  ->  A  e.  ~P A )
6 elin 3494 . . 3  |-  ( A  e.  ( C  i^i  ~P A )  <->  ( A  e.  C  /\  A  e. 
~P A ) )
73, 5, 6sylanbrc 646 . 2  |-  ( ( C  e.  (Moore `  X )  /\  A  e.  C )  ->  A  e.  ( C  i^i  ~P A ) )
8 simp1l 981 . . . 4  |-  ( ( ( C  e.  (Moore `  X )  /\  A  e.  C )  /\  x  C_  ( C  i^i  ~P A )  /\  x  =/=  (/) )  ->  C  e.  (Moore `  X )
)
9 inss1 3525 . . . . . 6  |-  ( C  i^i  ~P A ) 
C_  C
10 sstr 3320 . . . . . 6  |-  ( ( x  C_  ( C  i^i  ~P A )  /\  ( C  i^i  ~P A
)  C_  C )  ->  x  C_  C )
119, 10mpan2 653 . . . . 5  |-  ( x 
C_  ( C  i^i  ~P A )  ->  x  C_  C )
12113ad2ant2 979 . . . 4  |-  ( ( ( C  e.  (Moore `  X )  /\  A  e.  C )  /\  x  C_  ( C  i^i  ~P A )  /\  x  =/=  (/) )  ->  x  C_  C )
13 simp3 959 . . . 4  |-  ( ( ( C  e.  (Moore `  X )  /\  A  e.  C )  /\  x  C_  ( C  i^i  ~P A )  /\  x  =/=  (/) )  ->  x  =/=  (/) )
14 mreintcl 13779 . . . 4  |-  ( ( C  e.  (Moore `  X )  /\  x  C_  C  /\  x  =/=  (/) )  ->  |^| x  e.  C )
158, 12, 13, 14syl3anc 1184 . . 3  |-  ( ( ( C  e.  (Moore `  X )  /\  A  e.  C )  /\  x  C_  ( C  i^i  ~P A )  /\  x  =/=  (/) )  ->  |^| x  e.  C )
16 sstr 3320 . . . . . . . 8  |-  ( ( x  C_  ( C  i^i  ~P A )  /\  ( C  i^i  ~P A
)  C_  ~P A
)  ->  x  C_  ~P A )
171, 16mpan2 653 . . . . . . 7  |-  ( x 
C_  ( C  i^i  ~P A )  ->  x  C_ 
~P A )
18173ad2ant2 979 . . . . . 6  |-  ( ( ( C  e.  (Moore `  X )  /\  A  e.  C )  /\  x  C_  ( C  i^i  ~P A )  /\  x  =/=  (/) )  ->  x  C_ 
~P A )
19 intssuni2 4039 . . . . . 6  |-  ( ( x  C_  ~P A  /\  x  =/=  (/) )  ->  |^| x  C_  U. ~P A )
2018, 13, 19syl2anc 643 . . . . 5  |-  ( ( ( C  e.  (Moore `  X )  /\  A  e.  C )  /\  x  C_  ( C  i^i  ~P A )  /\  x  =/=  (/) )  ->  |^| x  C_ 
U. ~P A )
21 unipw 4378 . . . . 5  |-  U. ~P A  =  A
2220, 21syl6sseq 3358 . . . 4  |-  ( ( ( C  e.  (Moore `  X )  /\  A  e.  C )  /\  x  C_  ( C  i^i  ~P A )  /\  x  =/=  (/) )  ->  |^| x  C_  A )
23 elpw2g 4327 . . . . . 6  |-  ( A  e.  C  ->  ( |^| x  e.  ~P A 
<-> 
|^| x  C_  A
) )
2423adantl 453 . . . . 5  |-  ( ( C  e.  (Moore `  X )  /\  A  e.  C )  ->  ( |^| x  e.  ~P A 
<-> 
|^| x  C_  A
) )
25243ad2ant1 978 . . . 4  |-  ( ( ( C  e.  (Moore `  X )  /\  A  e.  C )  /\  x  C_  ( C  i^i  ~P A )  /\  x  =/=  (/) )  ->  ( |^| x  e.  ~P A 
<-> 
|^| x  C_  A
) )
2622, 25mpbird 224 . . 3  |-  ( ( ( C  e.  (Moore `  X )  /\  A  e.  C )  /\  x  C_  ( C  i^i  ~P A )  /\  x  =/=  (/) )  ->  |^| x  e.  ~P A )
27 elin 3494 . . 3  |-  ( |^| x  e.  ( C  i^i  ~P A )  <->  ( |^| x  e.  C  /\  |^| x  e.  ~P A
) )
2815, 26, 27sylanbrc 646 . 2  |-  ( ( ( C  e.  (Moore `  X )  /\  A  e.  C )  /\  x  C_  ( C  i^i  ~P A )  /\  x  =/=  (/) )  ->  |^| x  e.  ( C  i^i  ~P A ) )
292, 7, 28ismred 13786 1  |-  ( ( C  e.  (Moore `  X )  /\  A  e.  C )  ->  ( C  i^i  ~P A )  e.  (Moore `  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    e. wcel 1721    =/= wne 2571    i^i cin 3283    C_ wss 3284   (/)c0 3592   ~Pcpw 3763   U.cuni 3979   |^|cint 4014   ` cfv 5417  Moorecmre 13766
This theorem is referenced by:  submrc  13812
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-sep 4294  ax-nul 4302  ax-pow 4341  ax-pr 4367
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-ral 2675  df-rex 2676  df-rab 2679  df-v 2922  df-sbc 3126  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-nul 3593  df-if 3704  df-pw 3765  df-sn 3784  df-pr 3785  df-op 3787  df-uni 3980  df-int 4015  df-br 4177  df-opab 4231  df-mpt 4232  df-id 4462  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-iota 5381  df-fun 5419  df-fv 5425  df-mre 13770
  Copyright terms: Public domain W3C validator