MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subneg Unicode version

Theorem subneg 9096
Description: Relationship between subtraction and negative. (Contributed by NM, 10-May-2004.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
subneg  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  -  -u B
)  =  ( A  +  B ) )

Proof of Theorem subneg
StepHypRef Expression
1 df-neg 9040 . . . 4  |-  -u B  =  ( 0  -  B )
21oveq2i 5869 . . 3  |-  ( A  -  -u B )  =  ( A  -  (
0  -  B ) )
3 0cn 8831 . . . 4  |-  0  e.  CC
4 subsub 9077 . . . 4  |-  ( ( A  e.  CC  /\  0  e.  CC  /\  B  e.  CC )  ->  ( A  -  ( 0  -  B ) )  =  ( ( A  -  0 )  +  B ) )
53, 4mp3an2 1265 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  -  (
0  -  B ) )  =  ( ( A  -  0 )  +  B ) )
62, 5syl5eq 2327 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  -  -u B
)  =  ( ( A  -  0 )  +  B ) )
7 subid1 9068 . . . 4  |-  ( A  e.  CC  ->  ( A  -  0 )  =  A )
87adantr 451 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  -  0 )  =  A )
98oveq1d 5873 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  - 
0 )  +  B
)  =  ( A  +  B ) )
106, 9eqtrd 2315 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  -  -u B
)  =  ( A  +  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684  (class class class)co 5858   CCcc 8735   0cc0 8737    + caddc 8740    - cmin 9037   -ucneg 9038
This theorem is referenced by:  negneg  9097  negdi  9104  neg2sub  9107  subnegi  9125  subnegd  9164  recextlem1  9398  fzshftral  10869  shftval4  11572  sqreulem  11843  sqreu  11844  fsumshftm  12243  eftlub  12389  shft2rab  18867  atandm2  20173  atandm4  20175  acosneg  20183  atanneg  20203  atancj  20206  atanlogadd  20210  atanlogsublem  20211  atanlogsub  20212  efiatan2  20213  2efiatan  20214  tanatan  20215  atans2  20227  dvatan  20231  atantayl  20233  wilthlem1  20306  wilthlem3  20308  ftalem7  20316  ppiub  20443  2sqlem11  20614  2sqblem  20616  fsumcube  24795  itgsin0pilem1  27744
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-po 4314  df-so 4315  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-riota 6304  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-ltxr 8872  df-sub 9039  df-neg 9040
  Copyright terms: Public domain W3C validator