MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrgascl Unicode version

Theorem subrgascl 16239
Description: The scalar injection function in a subring algebra is the same up to a restriction to the subring. (Contributed by Mario Carneiro, 4-Jul-2015.)
Hypotheses
Ref Expression
subrgascl.p  |-  P  =  ( I mPoly  R )
subrgascl.a  |-  A  =  (algSc `  P )
subrgascl.h  |-  H  =  ( Rs  T )
subrgascl.u  |-  U  =  ( I mPoly  H )
subrgascl.i  |-  ( ph  ->  I  e.  W )
subrgascl.r  |-  ( ph  ->  T  e.  (SubRing `  R
) )
subrgascl.c  |-  C  =  (algSc `  U )
Assertion
Ref Expression
subrgascl  |-  ( ph  ->  C  =  ( A  |`  T ) )

Proof of Theorem subrgascl
Dummy variables  x  f  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrgascl.c . . . 4  |-  C  =  (algSc `  U )
2 eqid 2283 . . . 4  |-  (Scalar `  U )  =  (Scalar `  U )
3 eqid 2283 . . . 4  |-  ( Base `  (Scalar `  U )
)  =  ( Base `  (Scalar `  U )
)
41, 2, 3asclfn 16076 . . 3  |-  C  Fn  ( Base `  (Scalar `  U
) )
5 subrgascl.r . . . . . 6  |-  ( ph  ->  T  e.  (SubRing `  R
) )
6 subrgascl.h . . . . . . 7  |-  H  =  ( Rs  T )
76subrgbas 15554 . . . . . 6  |-  ( T  e.  (SubRing `  R
)  ->  T  =  ( Base `  H )
)
85, 7syl 15 . . . . 5  |-  ( ph  ->  T  =  ( Base `  H ) )
9 subrgascl.u . . . . . . 7  |-  U  =  ( I mPoly  H )
10 subrgascl.i . . . . . . 7  |-  ( ph  ->  I  e.  W )
11 ovex 5883 . . . . . . . . 9  |-  ( Rs  T )  e.  _V
126, 11eqeltri 2353 . . . . . . . 8  |-  H  e. 
_V
1312a1i 10 . . . . . . 7  |-  ( ph  ->  H  e.  _V )
149, 10, 13mplsca 16189 . . . . . 6  |-  ( ph  ->  H  =  (Scalar `  U ) )
1514fveq2d 5529 . . . . 5  |-  ( ph  ->  ( Base `  H
)  =  ( Base `  (Scalar `  U )
) )
168, 15eqtrd 2315 . . . 4  |-  ( ph  ->  T  =  ( Base `  (Scalar `  U )
) )
1716fneq2d 5336 . . 3  |-  ( ph  ->  ( C  Fn  T  <->  C  Fn  ( Base `  (Scalar `  U ) ) ) )
184, 17mpbiri 224 . 2  |-  ( ph  ->  C  Fn  T )
19 subrgascl.a . . . . 5  |-  A  =  (algSc `  P )
20 eqid 2283 . . . . 5  |-  (Scalar `  P )  =  (Scalar `  P )
21 eqid 2283 . . . . 5  |-  ( Base `  (Scalar `  P )
)  =  ( Base `  (Scalar `  P )
)
2219, 20, 21asclfn 16076 . . . 4  |-  A  Fn  ( Base `  (Scalar `  P
) )
23 subrgascl.p . . . . . . 7  |-  P  =  ( I mPoly  R )
24 subrgrcl 15550 . . . . . . . 8  |-  ( T  e.  (SubRing `  R
)  ->  R  e.  Ring )
255, 24syl 15 . . . . . . 7  |-  ( ph  ->  R  e.  Ring )
2623, 10, 25mplsca 16189 . . . . . 6  |-  ( ph  ->  R  =  (Scalar `  P ) )
2726fveq2d 5529 . . . . 5  |-  ( ph  ->  ( Base `  R
)  =  ( Base `  (Scalar `  P )
) )
2827fneq2d 5336 . . . 4  |-  ( ph  ->  ( A  Fn  ( Base `  R )  <->  A  Fn  ( Base `  (Scalar `  P
) ) ) )
2922, 28mpbiri 224 . . 3  |-  ( ph  ->  A  Fn  ( Base `  R ) )
30 eqid 2283 . . . . 5  |-  ( Base `  R )  =  (
Base `  R )
3130subrgss 15546 . . . 4  |-  ( T  e.  (SubRing `  R
)  ->  T  C_  ( Base `  R ) )
325, 31syl 15 . . 3  |-  ( ph  ->  T  C_  ( Base `  R ) )
33 fnssres 5357 . . 3  |-  ( ( A  Fn  ( Base `  R )  /\  T  C_  ( Base `  R
) )  ->  ( A  |`  T )  Fn  T )
3429, 32, 33syl2anc 642 . 2  |-  ( ph  ->  ( A  |`  T )  Fn  T )
35 fvres 5542 . . . 4  |-  ( x  e.  T  ->  (
( A  |`  T ) `
 x )  =  ( A `  x
) )
3635adantl 452 . . 3  |-  ( (
ph  /\  x  e.  T )  ->  (
( A  |`  T ) `
 x )  =  ( A `  x
) )
37 eqid 2283 . . . . . . . . 9  |-  ( 0g
`  R )  =  ( 0g `  R
)
386, 37subrg0 15552 . . . . . . . 8  |-  ( T  e.  (SubRing `  R
)  ->  ( 0g `  R )  =  ( 0g `  H ) )
395, 38syl 15 . . . . . . 7  |-  ( ph  ->  ( 0g `  R
)  =  ( 0g
`  H ) )
4039ifeq2d 3580 . . . . . 6  |-  ( ph  ->  if ( y  =  ( I  X.  {
0 } ) ,  x ,  ( 0g
`  R ) )  =  if ( y  =  ( I  X.  { 0 } ) ,  x ,  ( 0g `  H ) ) )
4140adantr 451 . . . . 5  |-  ( (
ph  /\  x  e.  T )  ->  if ( y  =  ( I  X.  { 0 } ) ,  x ,  ( 0g `  R ) )  =  if ( y  =  ( I  X.  {
0 } ) ,  x ,  ( 0g
`  H ) ) )
4241mpteq2dv 4107 . . . 4  |-  ( (
ph  /\  x  e.  T )  ->  (
y  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  |->  if ( y  =  ( I  X.  { 0 } ) ,  x ,  ( 0g `  R ) ) )  =  ( y  e. 
{ f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }  |->  if ( y  =  ( I  X.  { 0 } ) ,  x ,  ( 0g `  H
) ) ) )
43 eqid 2283 . . . . 5  |-  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
4410adantr 451 . . . . 5  |-  ( (
ph  /\  x  e.  T )  ->  I  e.  W )
4525adantr 451 . . . . 5  |-  ( (
ph  /\  x  e.  T )  ->  R  e.  Ring )
4632sselda 3180 . . . . 5  |-  ( (
ph  /\  x  e.  T )  ->  x  e.  ( Base `  R
) )
4723, 43, 37, 30, 19, 44, 45, 46mplascl 16237 . . . 4  |-  ( (
ph  /\  x  e.  T )  ->  ( A `  x )  =  ( y  e. 
{ f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }  |->  if ( y  =  ( I  X.  { 0 } ) ,  x ,  ( 0g `  R
) ) ) )
48 eqid 2283 . . . . 5  |-  ( 0g
`  H )  =  ( 0g `  H
)
49 eqid 2283 . . . . 5  |-  ( Base `  H )  =  (
Base `  H )
506subrgrng 15548 . . . . . . 7  |-  ( T  e.  (SubRing `  R
)  ->  H  e.  Ring )
515, 50syl 15 . . . . . 6  |-  ( ph  ->  H  e.  Ring )
5251adantr 451 . . . . 5  |-  ( (
ph  /\  x  e.  T )  ->  H  e.  Ring )
538eleq2d 2350 . . . . . 6  |-  ( ph  ->  ( x  e.  T  <->  x  e.  ( Base `  H
) ) )
5453biimpa 470 . . . . 5  |-  ( (
ph  /\  x  e.  T )  ->  x  e.  ( Base `  H
) )
559, 43, 48, 49, 1, 44, 52, 54mplascl 16237 . . . 4  |-  ( (
ph  /\  x  e.  T )  ->  ( C `  x )  =  ( y  e. 
{ f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }  |->  if ( y  =  ( I  X.  { 0 } ) ,  x ,  ( 0g `  H
) ) ) )
5642, 47, 553eqtr4d 2325 . . 3  |-  ( (
ph  /\  x  e.  T )  ->  ( A `  x )  =  ( C `  x ) )
5736, 56eqtr2d 2316 . 2  |-  ( (
ph  /\  x  e.  T )  ->  ( C `  x )  =  ( ( A  |`  T ) `  x
) )
5818, 34, 57eqfnfvd 5625 1  |-  ( ph  ->  C  =  ( A  |`  T ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   {crab 2547   _Vcvv 2788    C_ wss 3152   ifcif 3565   {csn 3640    e. cmpt 4077    X. cxp 4687   `'ccnv 4688    |` cres 4691   "cima 4692    Fn wfn 5250   ` cfv 5255  (class class class)co 5858    ^m cmap 6772   Fincfn 6863   0cc0 8737   NNcn 9746   NN0cn0 9965   Basecbs 13148   ↾s cress 13149  Scalarcsca 13211   0gc0g 13400   Ringcrg 15337  SubRingcsubrg 15541  algSccascl 16052   mPoly cmpl 16089
This theorem is referenced by:  subrgasclcl  16240  subrg1ascl  16336
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-ofr 6079  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-map 6774  df-pm 6775  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-oi 7225  df-card 7572  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-n0 9966  df-z 10025  df-uz 10231  df-fz 10783  df-fzo 10871  df-seq 11047  df-hash 11338  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-sca 13224  df-vsca 13225  df-tset 13227  df-0g 13404  df-gsum 13405  df-mre 13488  df-mrc 13489  df-acs 13491  df-mnd 14367  df-mhm 14415  df-submnd 14416  df-grp 14489  df-minusg 14490  df-mulg 14492  df-subg 14618  df-ghm 14681  df-cntz 14793  df-cmn 15091  df-abl 15092  df-mgp 15326  df-rng 15340  df-ur 15342  df-subrg 15543  df-ascl 16055  df-psr 16098  df-mpl 16100
  Copyright terms: Public domain W3C validator