MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrgascl Unicode version

Theorem subrgascl 16255
Description: The scalar injection function in a subring algebra is the same up to a restriction to the subring. (Contributed by Mario Carneiro, 4-Jul-2015.)
Hypotheses
Ref Expression
subrgascl.p  |-  P  =  ( I mPoly  R )
subrgascl.a  |-  A  =  (algSc `  P )
subrgascl.h  |-  H  =  ( Rs  T )
subrgascl.u  |-  U  =  ( I mPoly  H )
subrgascl.i  |-  ( ph  ->  I  e.  W )
subrgascl.r  |-  ( ph  ->  T  e.  (SubRing `  R
) )
subrgascl.c  |-  C  =  (algSc `  U )
Assertion
Ref Expression
subrgascl  |-  ( ph  ->  C  =  ( A  |`  T ) )

Proof of Theorem subrgascl
Dummy variables  x  f  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrgascl.c . . . 4  |-  C  =  (algSc `  U )
2 eqid 2296 . . . 4  |-  (Scalar `  U )  =  (Scalar `  U )
3 eqid 2296 . . . 4  |-  ( Base `  (Scalar `  U )
)  =  ( Base `  (Scalar `  U )
)
41, 2, 3asclfn 16092 . . 3  |-  C  Fn  ( Base `  (Scalar `  U
) )
5 subrgascl.r . . . . . 6  |-  ( ph  ->  T  e.  (SubRing `  R
) )
6 subrgascl.h . . . . . . 7  |-  H  =  ( Rs  T )
76subrgbas 15570 . . . . . 6  |-  ( T  e.  (SubRing `  R
)  ->  T  =  ( Base `  H )
)
85, 7syl 15 . . . . 5  |-  ( ph  ->  T  =  ( Base `  H ) )
9 subrgascl.u . . . . . . 7  |-  U  =  ( I mPoly  H )
10 subrgascl.i . . . . . . 7  |-  ( ph  ->  I  e.  W )
11 ovex 5899 . . . . . . . . 9  |-  ( Rs  T )  e.  _V
126, 11eqeltri 2366 . . . . . . . 8  |-  H  e. 
_V
1312a1i 10 . . . . . . 7  |-  ( ph  ->  H  e.  _V )
149, 10, 13mplsca 16205 . . . . . 6  |-  ( ph  ->  H  =  (Scalar `  U ) )
1514fveq2d 5545 . . . . 5  |-  ( ph  ->  ( Base `  H
)  =  ( Base `  (Scalar `  U )
) )
168, 15eqtrd 2328 . . . 4  |-  ( ph  ->  T  =  ( Base `  (Scalar `  U )
) )
1716fneq2d 5352 . . 3  |-  ( ph  ->  ( C  Fn  T  <->  C  Fn  ( Base `  (Scalar `  U ) ) ) )
184, 17mpbiri 224 . 2  |-  ( ph  ->  C  Fn  T )
19 subrgascl.a . . . . 5  |-  A  =  (algSc `  P )
20 eqid 2296 . . . . 5  |-  (Scalar `  P )  =  (Scalar `  P )
21 eqid 2296 . . . . 5  |-  ( Base `  (Scalar `  P )
)  =  ( Base `  (Scalar `  P )
)
2219, 20, 21asclfn 16092 . . . 4  |-  A  Fn  ( Base `  (Scalar `  P
) )
23 subrgascl.p . . . . . . 7  |-  P  =  ( I mPoly  R )
24 subrgrcl 15566 . . . . . . . 8  |-  ( T  e.  (SubRing `  R
)  ->  R  e.  Ring )
255, 24syl 15 . . . . . . 7  |-  ( ph  ->  R  e.  Ring )
2623, 10, 25mplsca 16205 . . . . . 6  |-  ( ph  ->  R  =  (Scalar `  P ) )
2726fveq2d 5545 . . . . 5  |-  ( ph  ->  ( Base `  R
)  =  ( Base `  (Scalar `  P )
) )
2827fneq2d 5352 . . . 4  |-  ( ph  ->  ( A  Fn  ( Base `  R )  <->  A  Fn  ( Base `  (Scalar `  P
) ) ) )
2922, 28mpbiri 224 . . 3  |-  ( ph  ->  A  Fn  ( Base `  R ) )
30 eqid 2296 . . . . 5  |-  ( Base `  R )  =  (
Base `  R )
3130subrgss 15562 . . . 4  |-  ( T  e.  (SubRing `  R
)  ->  T  C_  ( Base `  R ) )
325, 31syl 15 . . 3  |-  ( ph  ->  T  C_  ( Base `  R ) )
33 fnssres 5373 . . 3  |-  ( ( A  Fn  ( Base `  R )  /\  T  C_  ( Base `  R
) )  ->  ( A  |`  T )  Fn  T )
3429, 32, 33syl2anc 642 . 2  |-  ( ph  ->  ( A  |`  T )  Fn  T )
35 fvres 5558 . . . 4  |-  ( x  e.  T  ->  (
( A  |`  T ) `
 x )  =  ( A `  x
) )
3635adantl 452 . . 3  |-  ( (
ph  /\  x  e.  T )  ->  (
( A  |`  T ) `
 x )  =  ( A `  x
) )
37 eqid 2296 . . . . . . . . 9  |-  ( 0g
`  R )  =  ( 0g `  R
)
386, 37subrg0 15568 . . . . . . . 8  |-  ( T  e.  (SubRing `  R
)  ->  ( 0g `  R )  =  ( 0g `  H ) )
395, 38syl 15 . . . . . . 7  |-  ( ph  ->  ( 0g `  R
)  =  ( 0g
`  H ) )
4039ifeq2d 3593 . . . . . 6  |-  ( ph  ->  if ( y  =  ( I  X.  {
0 } ) ,  x ,  ( 0g
`  R ) )  =  if ( y  =  ( I  X.  { 0 } ) ,  x ,  ( 0g `  H ) ) )
4140adantr 451 . . . . 5  |-  ( (
ph  /\  x  e.  T )  ->  if ( y  =  ( I  X.  { 0 } ) ,  x ,  ( 0g `  R ) )  =  if ( y  =  ( I  X.  {
0 } ) ,  x ,  ( 0g
`  H ) ) )
4241mpteq2dv 4123 . . . 4  |-  ( (
ph  /\  x  e.  T )  ->  (
y  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  |->  if ( y  =  ( I  X.  { 0 } ) ,  x ,  ( 0g `  R ) ) )  =  ( y  e. 
{ f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }  |->  if ( y  =  ( I  X.  { 0 } ) ,  x ,  ( 0g `  H
) ) ) )
43 eqid 2296 . . . . 5  |-  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
4410adantr 451 . . . . 5  |-  ( (
ph  /\  x  e.  T )  ->  I  e.  W )
4525adantr 451 . . . . 5  |-  ( (
ph  /\  x  e.  T )  ->  R  e.  Ring )
4632sselda 3193 . . . . 5  |-  ( (
ph  /\  x  e.  T )  ->  x  e.  ( Base `  R
) )
4723, 43, 37, 30, 19, 44, 45, 46mplascl 16253 . . . 4  |-  ( (
ph  /\  x  e.  T )  ->  ( A `  x )  =  ( y  e. 
{ f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }  |->  if ( y  =  ( I  X.  { 0 } ) ,  x ,  ( 0g `  R
) ) ) )
48 eqid 2296 . . . . 5  |-  ( 0g
`  H )  =  ( 0g `  H
)
49 eqid 2296 . . . . 5  |-  ( Base `  H )  =  (
Base `  H )
506subrgrng 15564 . . . . . . 7  |-  ( T  e.  (SubRing `  R
)  ->  H  e.  Ring )
515, 50syl 15 . . . . . 6  |-  ( ph  ->  H  e.  Ring )
5251adantr 451 . . . . 5  |-  ( (
ph  /\  x  e.  T )  ->  H  e.  Ring )
538eleq2d 2363 . . . . . 6  |-  ( ph  ->  ( x  e.  T  <->  x  e.  ( Base `  H
) ) )
5453biimpa 470 . . . . 5  |-  ( (
ph  /\  x  e.  T )  ->  x  e.  ( Base `  H
) )
559, 43, 48, 49, 1, 44, 52, 54mplascl 16253 . . . 4  |-  ( (
ph  /\  x  e.  T )  ->  ( C `  x )  =  ( y  e. 
{ f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }  |->  if ( y  =  ( I  X.  { 0 } ) ,  x ,  ( 0g `  H
) ) ) )
5642, 47, 553eqtr4d 2338 . . 3  |-  ( (
ph  /\  x  e.  T )  ->  ( A `  x )  =  ( C `  x ) )
5736, 56eqtr2d 2329 . 2  |-  ( (
ph  /\  x  e.  T )  ->  ( C `  x )  =  ( ( A  |`  T ) `  x
) )
5818, 34, 57eqfnfvd 5641 1  |-  ( ph  ->  C  =  ( A  |`  T ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   {crab 2560   _Vcvv 2801    C_ wss 3165   ifcif 3578   {csn 3653    e. cmpt 4093    X. cxp 4703   `'ccnv 4704    |` cres 4707   "cima 4708    Fn wfn 5266   ` cfv 5271  (class class class)co 5874    ^m cmap 6788   Fincfn 6879   0cc0 8753   NNcn 9762   NN0cn0 9981   Basecbs 13164   ↾s cress 13165  Scalarcsca 13227   0gc0g 13416   Ringcrg 15353  SubRingcsubrg 15557  algSccascl 16068   mPoly cmpl 16105
This theorem is referenced by:  subrgasclcl  16256  subrg1ascl  16352
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-of 6094  df-ofr 6095  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-er 6676  df-map 6790  df-pm 6791  df-ixp 6834  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-oi 7241  df-card 7588  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-7 9825  df-8 9826  df-9 9827  df-n0 9982  df-z 10041  df-uz 10247  df-fz 10799  df-fzo 10887  df-seq 11063  df-hash 11354  df-struct 13166  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-mulr 13238  df-sca 13240  df-vsca 13241  df-tset 13243  df-0g 13420  df-gsum 13421  df-mre 13504  df-mrc 13505  df-acs 13507  df-mnd 14383  df-mhm 14431  df-submnd 14432  df-grp 14505  df-minusg 14506  df-mulg 14508  df-subg 14634  df-ghm 14697  df-cntz 14809  df-cmn 15107  df-abl 15108  df-mgp 15342  df-rng 15356  df-ur 15358  df-subrg 15559  df-ascl 16071  df-psr 16114  df-mpl 16116
  Copyright terms: Public domain W3C validator