MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrgasclcl Structured version   Unicode version

Theorem subrgasclcl 16561
Description: The scalars in a polynomial algebra are in the subring algebra iff the scalar value is in the subring. (Contributed by Mario Carneiro, 4-Jul-2015.)
Hypotheses
Ref Expression
subrgascl.p  |-  P  =  ( I mPoly  R )
subrgascl.a  |-  A  =  (algSc `  P )
subrgascl.h  |-  H  =  ( Rs  T )
subrgascl.u  |-  U  =  ( I mPoly  H )
subrgascl.i  |-  ( ph  ->  I  e.  W )
subrgascl.r  |-  ( ph  ->  T  e.  (SubRing `  R
) )
subrgasclcl.b  |-  B  =  ( Base `  U
)
subrgasclcl.k  |-  K  =  ( Base `  R
)
subrgasclcl.x  |-  ( ph  ->  X  e.  K )
Assertion
Ref Expression
subrgasclcl  |-  ( ph  ->  ( ( A `  X )  e.  B  <->  X  e.  T ) )

Proof of Theorem subrgasclcl
Dummy variables  x  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrgascl.i . . . . . 6  |-  ( ph  ->  I  e.  W )
21adantr 453 . . . . 5  |-  ( (
ph  /\  ( A `  X )  e.  B
)  ->  I  e.  W )
3 eqid 2438 . . . . . 6  |-  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
43psrbag0 16556 . . . . 5  |-  ( I  e.  W  ->  (
I  X.  { 0 } )  e.  {
f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin } )
52, 4syl 16 . . . 4  |-  ( (
ph  /\  ( A `  X )  e.  B
)  ->  ( I  X.  { 0 } )  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin } )
6 eqid 2438 . . . . . 6  |-  ( I mPwSer  H )  =  ( I mPwSer  H )
7 eqid 2438 . . . . . 6  |-  ( Base `  H )  =  (
Base `  H )
8 eqid 2438 . . . . . 6  |-  ( Base `  ( I mPwSer  H ) )  =  ( Base `  ( I mPwSer  H ) )
9 subrgascl.p . . . . . . . . 9  |-  P  =  ( I mPoly  R )
10 eqid 2438 . . . . . . . . 9  |-  ( 0g
`  R )  =  ( 0g `  R
)
11 subrgasclcl.k . . . . . . . . 9  |-  K  =  ( Base `  R
)
12 subrgascl.a . . . . . . . . 9  |-  A  =  (algSc `  P )
13 subrgascl.r . . . . . . . . . 10  |-  ( ph  ->  T  e.  (SubRing `  R
) )
14 subrgrcl 15875 . . . . . . . . . 10  |-  ( T  e.  (SubRing `  R
)  ->  R  e.  Ring )
1513, 14syl 16 . . . . . . . . 9  |-  ( ph  ->  R  e.  Ring )
16 subrgasclcl.x . . . . . . . . 9  |-  ( ph  ->  X  e.  K )
179, 3, 10, 11, 12, 1, 15, 16mplascl 16558 . . . . . . . 8  |-  ( ph  ->  ( A `  X
)  =  ( x  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  |->  if ( x  =  ( I  X.  { 0 } ) ,  X ,  ( 0g `  R ) ) ) )
1817adantr 453 . . . . . . 7  |-  ( (
ph  /\  ( A `  X )  e.  B
)  ->  ( A `  X )  =  ( x  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  |->  if ( x  =  ( I  X.  { 0 } ) ,  X ,  ( 0g `  R ) ) ) )
19 subrgascl.u . . . . . . . . . 10  |-  U  =  ( I mPoly  H )
20 subrgasclcl.b . . . . . . . . . 10  |-  B  =  ( Base `  U
)
21 subrgascl.h . . . . . . . . . . . 12  |-  H  =  ( Rs  T )
2221subrgrng 15873 . . . . . . . . . . 11  |-  ( T  e.  (SubRing `  R
)  ->  H  e.  Ring )
2313, 22syl 16 . . . . . . . . . 10  |-  ( ph  ->  H  e.  Ring )
246, 19, 20, 1, 23mplsubrg 16505 . . . . . . . . 9  |-  ( ph  ->  B  e.  (SubRing `  (
I mPwSer  H ) ) )
258subrgss 15871 . . . . . . . . 9  |-  ( B  e.  (SubRing `  (
I mPwSer  H ) )  ->  B  C_  ( Base `  (
I mPwSer  H ) ) )
2624, 25syl 16 . . . . . . . 8  |-  ( ph  ->  B  C_  ( Base `  ( I mPwSer  H ) ) )
2726sselda 3350 . . . . . . 7  |-  ( (
ph  /\  ( A `  X )  e.  B
)  ->  ( A `  X )  e.  (
Base `  ( I mPwSer  H ) ) )
2818, 27eqeltrrd 2513 . . . . . 6  |-  ( (
ph  /\  ( A `  X )  e.  B
)  ->  ( x  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }  |->  if ( x  =  ( I  X.  { 0 } ) ,  X , 
( 0g `  R
) ) )  e.  ( Base `  (
I mPwSer  H ) ) )
296, 7, 3, 8, 28psrelbas 16446 . . . . 5  |-  ( (
ph  /\  ( A `  X )  e.  B
)  ->  ( x  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }  |->  if ( x  =  ( I  X.  { 0 } ) ,  X , 
( 0g `  R
) ) ) : { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } --> ( Base `  H
) )
30 eqid 2438 . . . . . 6  |-  ( x  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  |->  if ( x  =  ( I  X.  { 0 } ) ,  X ,  ( 0g `  R ) ) )  =  ( x  e. 
{ f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }  |->  if ( x  =  ( I  X.  { 0 } ) ,  X , 
( 0g `  R
) ) )
3130fmpt 5892 . . . . 5  |-  ( A. x  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin } if ( x  =  (
I  X.  { 0 } ) ,  X ,  ( 0g `  R ) )  e.  ( Base `  H
)  <->  ( x  e. 
{ f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }  |->  if ( x  =  ( I  X.  { 0 } ) ,  X , 
( 0g `  R
) ) ) : { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } --> ( Base `  H
) )
3229, 31sylibr 205 . . . 4  |-  ( (
ph  /\  ( A `  X )  e.  B
)  ->  A. x  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } if ( x  =  ( I  X.  { 0 } ) ,  X ,  ( 0g `  R ) )  e.  ( Base `  H ) )
33 iftrue 3747 . . . . . 6  |-  ( x  =  ( I  X.  { 0 } )  ->  if ( x  =  ( I  X.  { 0 } ) ,  X ,  ( 0g `  R ) )  =  X )
3433eleq1d 2504 . . . . 5  |-  ( x  =  ( I  X.  { 0 } )  ->  ( if ( x  =  ( I  X.  { 0 } ) ,  X , 
( 0g `  R
) )  e.  (
Base `  H )  <->  X  e.  ( Base `  H
) ) )
3534rspcv 3050 . . . 4  |-  ( ( I  X.  { 0 } )  e.  {
f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin }  ->  ( A. x  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } if ( x  =  ( I  X.  { 0 } ) ,  X ,  ( 0g `  R ) )  e.  ( Base `  H )  ->  X  e.  ( Base `  H
) ) )
365, 32, 35sylc 59 . . 3  |-  ( (
ph  /\  ( A `  X )  e.  B
)  ->  X  e.  ( Base `  H )
)
3721subrgbas 15879 . . . . 5  |-  ( T  e.  (SubRing `  R
)  ->  T  =  ( Base `  H )
)
3813, 37syl 16 . . . 4  |-  ( ph  ->  T  =  ( Base `  H ) )
3938adantr 453 . . 3  |-  ( (
ph  /\  ( A `  X )  e.  B
)  ->  T  =  ( Base `  H )
)
4036, 39eleqtrrd 2515 . 2  |-  ( (
ph  /\  ( A `  X )  e.  B
)  ->  X  e.  T )
41 eqid 2438 . . . . . 6  |-  (algSc `  U )  =  (algSc `  U )
429, 12, 21, 19, 1, 13, 41subrgascl 16560 . . . . 5  |-  ( ph  ->  (algSc `  U )  =  ( A  |`  T ) )
4342fveq1d 5732 . . . 4  |-  ( ph  ->  ( (algSc `  U
) `  X )  =  ( ( A  |`  T ) `  X
) )
44 fvres 5747 . . . 4  |-  ( X  e.  T  ->  (
( A  |`  T ) `
 X )  =  ( A `  X
) )
4543, 44sylan9eq 2490 . . 3  |-  ( (
ph  /\  X  e.  T )  ->  (
(algSc `  U ) `  X )  =  ( A `  X ) )
46 eqid 2438 . . . . . . 7  |-  (Scalar `  U )  =  (Scalar `  U )
4719mplrng 16517 . . . . . . 7  |-  ( ( I  e.  W  /\  H  e.  Ring )  ->  U  e.  Ring )
4819mpllmod 16516 . . . . . . 7  |-  ( ( I  e.  W  /\  H  e.  Ring )  ->  U  e.  LMod )
49 eqid 2438 . . . . . . 7  |-  ( Base `  (Scalar `  U )
)  =  ( Base `  (Scalar `  U )
)
5041, 46, 47, 48, 49, 20asclf 16398 . . . . . 6  |-  ( ( I  e.  W  /\  H  e.  Ring )  -> 
(algSc `  U ) : ( Base `  (Scalar `  U ) ) --> B )
511, 23, 50syl2anc 644 . . . . 5  |-  ( ph  ->  (algSc `  U ) : ( Base `  (Scalar `  U ) ) --> B )
5251adantr 453 . . . 4  |-  ( (
ph  /\  X  e.  T )  ->  (algSc `  U ) : (
Base `  (Scalar `  U
) ) --> B )
5319, 1, 23mplsca 16510 . . . . . . . 8  |-  ( ph  ->  H  =  (Scalar `  U ) )
5453fveq2d 5734 . . . . . . 7  |-  ( ph  ->  ( Base `  H
)  =  ( Base `  (Scalar `  U )
) )
5538, 54eqtrd 2470 . . . . . 6  |-  ( ph  ->  T  =  ( Base `  (Scalar `  U )
) )
5655eleq2d 2505 . . . . 5  |-  ( ph  ->  ( X  e.  T  <->  X  e.  ( Base `  (Scalar `  U ) ) ) )
5756biimpa 472 . . . 4  |-  ( (
ph  /\  X  e.  T )  ->  X  e.  ( Base `  (Scalar `  U ) ) )
5852, 57ffvelrnd 5873 . . 3  |-  ( (
ph  /\  X  e.  T )  ->  (
(algSc `  U ) `  X )  e.  B
)
5945, 58eqeltrrd 2513 . 2  |-  ( (
ph  /\  X  e.  T )  ->  ( A `  X )  e.  B )
6040, 59impbida 807 1  |-  ( ph  ->  ( ( A `  X )  e.  B  <->  X  e.  T ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1653    e. wcel 1726   A.wral 2707   {crab 2711    C_ wss 3322   ifcif 3741   {csn 3816    e. cmpt 4268    X. cxp 4878   `'ccnv 4879    |` cres 4882   "cima 4883   -->wf 5452   ` cfv 5456  (class class class)co 6083    ^m cmap 7020   Fincfn 7111   0cc0 8992   NNcn 10002   NN0cn0 10223   Basecbs 13471   ↾s cress 13472  Scalarcsca 13534   0gc0g 13725   Ringcrg 15662  SubRingcsubrg 15866  algSccascl 16373   mPwSer cmps 16408   mPoly cmpl 16410
This theorem is referenced by:  subrg1asclcl  16655
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703  ax-inf2 7598  ax-cnex 9048  ax-resscn 9049  ax-1cn 9050  ax-icn 9051  ax-addcl 9052  ax-addrcl 9053  ax-mulcl 9054  ax-mulrcl 9055  ax-mulcom 9056  ax-addass 9057  ax-mulass 9058  ax-distr 9059  ax-i2m1 9060  ax-1ne0 9061  ax-1rid 9062  ax-rnegex 9063  ax-rrecex 9064  ax-cnre 9065  ax-pre-lttri 9066  ax-pre-lttrn 9067  ax-pre-ltadd 9068  ax-pre-mulgt0 9069
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-iin 4098  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-se 4544  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-isom 5465  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-of 6307  df-ofr 6308  df-1st 6351  df-2nd 6352  df-riota 6551  df-recs 6635  df-rdg 6670  df-1o 6726  df-2o 6727  df-oadd 6730  df-er 6907  df-map 7022  df-pm 7023  df-ixp 7066  df-en 7112  df-dom 7113  df-sdom 7114  df-fin 7115  df-oi 7481  df-card 7828  df-pnf 9124  df-mnf 9125  df-xr 9126  df-ltxr 9127  df-le 9128  df-sub 9295  df-neg 9296  df-nn 10003  df-2 10060  df-3 10061  df-4 10062  df-5 10063  df-6 10064  df-7 10065  df-8 10066  df-9 10067  df-n0 10224  df-z 10285  df-uz 10491  df-fz 11046  df-fzo 11138  df-seq 11326  df-hash 11621  df-struct 13473  df-ndx 13474  df-slot 13475  df-base 13476  df-sets 13477  df-ress 13478  df-plusg 13544  df-mulr 13545  df-sca 13547  df-vsca 13548  df-tset 13550  df-0g 13729  df-gsum 13730  df-mre 13813  df-mrc 13814  df-acs 13816  df-mnd 14692  df-mhm 14740  df-submnd 14741  df-grp 14814  df-minusg 14815  df-sbg 14816  df-mulg 14817  df-subg 14943  df-ghm 15006  df-cntz 15118  df-cmn 15416  df-abl 15417  df-mgp 15651  df-rng 15665  df-ur 15667  df-subrg 15868  df-lmod 15954  df-lss 16011  df-ascl 16376  df-psr 16419  df-mpl 16421
  Copyright terms: Public domain W3C validator