MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrgmre Unicode version

Theorem subrgmre 15819
Description: The subrings of a ring are a Moore system. (Contributed by Stefan O'Rear, 9-Mar-2015.)
Hypothesis
Ref Expression
subrgmre.b  |-  B  =  ( Base `  R
)
Assertion
Ref Expression
subrgmre  |-  ( R  e.  Ring  ->  (SubRing `  R
)  e.  (Moore `  B ) )

Proof of Theorem subrgmre
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 subrgmre.b . . . . . 6  |-  B  =  ( Base `  R
)
21subrgss 15796 . . . . 5  |-  ( a  e.  (SubRing `  R
)  ->  a  C_  B )
3 vex 2902 . . . . . 6  |-  a  e. 
_V
43elpw 3748 . . . . 5  |-  ( a  e.  ~P B  <->  a  C_  B )
52, 4sylibr 204 . . . 4  |-  ( a  e.  (SubRing `  R
)  ->  a  e.  ~P B )
65a1i 11 . . 3  |-  ( R  e.  Ring  ->  ( a  e.  (SubRing `  R
)  ->  a  e.  ~P B ) )
76ssrdv 3297 . 2  |-  ( R  e.  Ring  ->  (SubRing `  R
)  C_  ~P B
)
81subrgid 15797 . 2  |-  ( R  e.  Ring  ->  B  e.  (SubRing `  R )
)
9 subrgint 15817 . . 3  |-  ( ( a  C_  (SubRing `  R
)  /\  a  =/=  (/) )  ->  |^| a  e.  (SubRing `  R )
)
1093adant1 975 . 2  |-  ( ( R  e.  Ring  /\  a  C_  (SubRing `  R )  /\  a  =/=  (/) )  ->  |^| a  e.  (SubRing `  R ) )
117, 8, 10ismred 13754 1  |-  ( R  e.  Ring  ->  (SubRing `  R
)  e.  (Moore `  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1649    e. wcel 1717    =/= wne 2550    C_ wss 3263   (/)c0 3571   ~Pcpw 3742   |^|cint 3992   ` cfv 5394   Basecbs 13396  Moorecmre 13734   Ringcrg 15587  SubRingcsubrg 15791
This theorem is referenced by:  aspval2  16332  evlseu  19804
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-cnex 8979  ax-resscn 8980  ax-1cn 8981  ax-icn 8982  ax-addcl 8983  ax-addrcl 8984  ax-mulcl 8985  ax-mulrcl 8986  ax-mulcom 8987  ax-addass 8988  ax-mulass 8989  ax-distr 8990  ax-i2m1 8991  ax-1ne0 8992  ax-1rid 8993  ax-rnegex 8994  ax-rrecex 8995  ax-cnre 8996  ax-pre-lttri 8997  ax-pre-lttrn 8998  ax-pre-ltadd 8999  ax-pre-mulgt0 9000
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rmo 2657  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-int 3993  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-riota 6485  df-recs 6569  df-rdg 6604  df-er 6841  df-en 7046  df-dom 7047  df-sdom 7048  df-pnf 9055  df-mnf 9056  df-xr 9057  df-ltxr 9058  df-le 9059  df-sub 9225  df-neg 9226  df-nn 9933  df-2 9990  df-3 9991  df-ndx 13399  df-slot 13400  df-base 13401  df-sets 13402  df-ress 13403  df-plusg 13469  df-mulr 13470  df-0g 13654  df-mre 13738  df-mnd 14617  df-grp 14739  df-minusg 14740  df-subg 14868  df-mgp 15576  df-rng 15590  df-ur 15592  df-subrg 15793
  Copyright terms: Public domain W3C validator