MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrgmvr Unicode version

Theorem subrgmvr 16483
Description: The variables in a subring polynomial algebra are the same as the original ring. (Contributed by Mario Carneiro, 4-Jul-2015.)
Hypotheses
Ref Expression
subrgmvr.v  |-  V  =  ( I mVar  R )
subrgmvr.i  |-  ( ph  ->  I  e.  W )
subrgmvr.r  |-  ( ph  ->  T  e.  (SubRing `  R
) )
subrgmvr.h  |-  H  =  ( Rs  T )
Assertion
Ref Expression
subrgmvr  |-  ( ph  ->  V  =  ( I mVar 
H ) )

Proof of Theorem subrgmvr
Dummy variables  x  y  f  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrgmvr.r . . . . . 6  |-  ( ph  ->  T  e.  (SubRing `  R
) )
2 subrgmvr.h . . . . . . 7  |-  H  =  ( Rs  T )
3 eqid 2408 . . . . . . 7  |-  ( 1r
`  R )  =  ( 1r `  R
)
42, 3subrg1 15837 . . . . . 6  |-  ( T  e.  (SubRing `  R
)  ->  ( 1r `  R )  =  ( 1r `  H ) )
51, 4syl 16 . . . . 5  |-  ( ph  ->  ( 1r `  R
)  =  ( 1r
`  H ) )
6 eqid 2408 . . . . . . 7  |-  ( 0g
`  R )  =  ( 0g `  R
)
72, 6subrg0 15834 . . . . . 6  |-  ( T  e.  (SubRing `  R
)  ->  ( 0g `  R )  =  ( 0g `  H ) )
81, 7syl 16 . . . . 5  |-  ( ph  ->  ( 0g `  R
)  =  ( 0g
`  H ) )
95, 8ifeq12d 3719 . . . 4  |-  ( ph  ->  if ( y  =  ( z  e.  I  |->  if ( z  =  x ,  1 ,  0 ) ) ,  ( 1r `  R
) ,  ( 0g
`  R ) )  =  if ( y  =  ( z  e.  I  |->  if ( z  =  x ,  1 ,  0 ) ) ,  ( 1r `  H ) ,  ( 0g `  H ) ) )
109mpteq2dv 4260 . . 3  |-  ( ph  ->  ( y  e.  {
f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin } 
|->  if ( y  =  ( z  e.  I  |->  if ( z  =  x ,  1 ,  0 ) ) ,  ( 1r `  R
) ,  ( 0g
`  R ) ) )  =  ( y  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  |->  if ( y  =  ( z  e.  I  |->  if ( z  =  x ,  1 ,  0 ) ) ,  ( 1r `  H ) ,  ( 0g `  H ) ) ) )
1110mpteq2dv 4260 . 2  |-  ( ph  ->  ( x  e.  I  |->  ( y  e.  {
f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin } 
|->  if ( y  =  ( z  e.  I  |->  if ( z  =  x ,  1 ,  0 ) ) ,  ( 1r `  R
) ,  ( 0g
`  R ) ) ) )  =  ( x  e.  I  |->  ( y  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  |->  if ( y  =  ( z  e.  I  |->  if ( z  =  x ,  1 ,  0 ) ) ,  ( 1r `  H ) ,  ( 0g `  H ) ) ) ) )
12 subrgmvr.v . . 3  |-  V  =  ( I mVar  R )
13 eqid 2408 . . 3  |-  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
14 subrgmvr.i . . 3  |-  ( ph  ->  I  e.  W )
15 subrgrcl 15832 . . . 4  |-  ( T  e.  (SubRing `  R
)  ->  R  e.  Ring )
161, 15syl 16 . . 3  |-  ( ph  ->  R  e.  Ring )
1712, 13, 6, 3, 14, 16mvrfval 16443 . 2  |-  ( ph  ->  V  =  ( x  e.  I  |->  ( y  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  |->  if ( y  =  ( z  e.  I  |->  if ( z  =  x ,  1 ,  0 ) ) ,  ( 1r `  R ) ,  ( 0g `  R ) ) ) ) )
18 eqid 2408 . . 3  |-  ( I mVar 
H )  =  ( I mVar  H )
19 eqid 2408 . . 3  |-  ( 0g
`  H )  =  ( 0g `  H
)
20 eqid 2408 . . 3  |-  ( 1r
`  H )  =  ( 1r `  H
)
21 ovex 6069 . . . . 5  |-  ( Rs  T )  e.  _V
222, 21eqeltri 2478 . . . 4  |-  H  e. 
_V
2322a1i 11 . . 3  |-  ( ph  ->  H  e.  _V )
2418, 13, 19, 20, 14, 23mvrfval 16443 . 2  |-  ( ph  ->  ( I mVar  H )  =  ( x  e.  I  |->  ( y  e. 
{ f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }  |->  if ( y  =  ( z  e.  I  |->  if ( z  =  x ,  1 ,  0 ) ) ,  ( 1r
`  H ) ,  ( 0g `  H
) ) ) ) )
2511, 17, 243eqtr4d 2450 1  |-  ( ph  ->  V  =  ( I mVar 
H ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1649    e. wcel 1721   {crab 2674   _Vcvv 2920   ifcif 3703    e. cmpt 4230   `'ccnv 4840   "cima 4844   ` cfv 5417  (class class class)co 6044    ^m cmap 6981   Fincfn 7072   0cc0 8950   1c1 8951   NNcn 9960   NN0cn0 10181   ↾s cress 13429   0gc0g 13682   Ringcrg 15619   1rcur 15621  SubRingcsubrg 15823   mVar cmvr 16366
This theorem is referenced by:  subrgmvrf  16484  subrgvr1  16613
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-rep 4284  ax-sep 4294  ax-nul 4302  ax-pow 4341  ax-pr 4367  ax-un 4664  ax-cnex 9006  ax-resscn 9007  ax-1cn 9008  ax-icn 9009  ax-addcl 9010  ax-addrcl 9011  ax-mulcl 9012  ax-mulrcl 9013  ax-mulcom 9014  ax-addass 9015  ax-mulass 9016  ax-distr 9017  ax-i2m1 9018  ax-1ne0 9019  ax-1rid 9020  ax-rnegex 9021  ax-rrecex 9022  ax-cnre 9023  ax-pre-lttri 9024  ax-pre-lttrn 9025  ax-pre-ltadd 9026  ax-pre-mulgt0 9027
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-nel 2574  df-ral 2675  df-rex 2676  df-reu 2677  df-rmo 2678  df-rab 2679  df-v 2922  df-sbc 3126  df-csb 3216  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-pss 3300  df-nul 3593  df-if 3704  df-pw 3765  df-sn 3784  df-pr 3785  df-tp 3786  df-op 3787  df-uni 3980  df-iun 4059  df-br 4177  df-opab 4231  df-mpt 4232  df-tr 4267  df-eprel 4458  df-id 4462  df-po 4467  df-so 4468  df-fr 4505  df-we 4507  df-ord 4548  df-on 4549  df-lim 4550  df-suc 4551  df-om 4809  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854  df-iota 5381  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-ov 6047  df-oprab 6048  df-mpt2 6049  df-riota 6512  df-recs 6596  df-rdg 6631  df-er 6868  df-en 7073  df-dom 7074  df-sdom 7075  df-pnf 9082  df-mnf 9083  df-xr 9084  df-ltxr 9085  df-le 9086  df-sub 9253  df-neg 9254  df-nn 9961  df-2 10018  df-3 10019  df-ndx 13431  df-slot 13432  df-base 13433  df-sets 13434  df-ress 13435  df-plusg 13501  df-mulr 13502  df-0g 13686  df-mnd 14649  df-grp 14771  df-subg 14900  df-mgp 15608  df-rng 15622  df-ur 15624  df-subrg 15825  df-mvr 16377
  Copyright terms: Public domain W3C validator