MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subrgmvr Unicode version

Theorem subrgmvr 16205
Description: The variables in a subring polynomial algebra are the same as the original ring. (Contributed by Mario Carneiro, 4-Jul-2015.)
Hypotheses
Ref Expression
subrgmvr.v  |-  V  =  ( I mVar  R )
subrgmvr.i  |-  ( ph  ->  I  e.  W )
subrgmvr.r  |-  ( ph  ->  T  e.  (SubRing `  R
) )
subrgmvr.h  |-  H  =  ( Rs  T )
Assertion
Ref Expression
subrgmvr  |-  ( ph  ->  V  =  ( I mVar 
H ) )

Proof of Theorem subrgmvr
Dummy variables  x  y  f  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subrgmvr.r . . . . . 6  |-  ( ph  ->  T  e.  (SubRing `  R
) )
2 subrgmvr.h . . . . . . 7  |-  H  =  ( Rs  T )
3 eqid 2283 . . . . . . 7  |-  ( 1r
`  R )  =  ( 1r `  R
)
42, 3subrg1 15555 . . . . . 6  |-  ( T  e.  (SubRing `  R
)  ->  ( 1r `  R )  =  ( 1r `  H ) )
51, 4syl 15 . . . . 5  |-  ( ph  ->  ( 1r `  R
)  =  ( 1r
`  H ) )
6 eqid 2283 . . . . . . 7  |-  ( 0g
`  R )  =  ( 0g `  R
)
72, 6subrg0 15552 . . . . . 6  |-  ( T  e.  (SubRing `  R
)  ->  ( 0g `  R )  =  ( 0g `  H ) )
81, 7syl 15 . . . . 5  |-  ( ph  ->  ( 0g `  R
)  =  ( 0g
`  H ) )
95, 8ifeq12d 3581 . . . 4  |-  ( ph  ->  if ( y  =  ( z  e.  I  |->  if ( z  =  x ,  1 ,  0 ) ) ,  ( 1r `  R
) ,  ( 0g
`  R ) )  =  if ( y  =  ( z  e.  I  |->  if ( z  =  x ,  1 ,  0 ) ) ,  ( 1r `  H ) ,  ( 0g `  H ) ) )
109mpteq2dv 4107 . . 3  |-  ( ph  ->  ( y  e.  {
f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin } 
|->  if ( y  =  ( z  e.  I  |->  if ( z  =  x ,  1 ,  0 ) ) ,  ( 1r `  R
) ,  ( 0g
`  R ) ) )  =  ( y  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  |->  if ( y  =  ( z  e.  I  |->  if ( z  =  x ,  1 ,  0 ) ) ,  ( 1r `  H ) ,  ( 0g `  H ) ) ) )
1110mpteq2dv 4107 . 2  |-  ( ph  ->  ( x  e.  I  |->  ( y  e.  {
f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin } 
|->  if ( y  =  ( z  e.  I  |->  if ( z  =  x ,  1 ,  0 ) ) ,  ( 1r `  R
) ,  ( 0g
`  R ) ) ) )  =  ( x  e.  I  |->  ( y  e.  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  |->  if ( y  =  ( z  e.  I  |->  if ( z  =  x ,  1 ,  0 ) ) ,  ( 1r `  H ) ,  ( 0g `  H ) ) ) ) )
12 subrgmvr.v . . 3  |-  V  =  ( I mVar  R )
13 eqid 2283 . . 3  |-  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
14 subrgmvr.i . . 3  |-  ( ph  ->  I  e.  W )
15 subrgrcl 15550 . . . 4  |-  ( T  e.  (SubRing `  R
)  ->  R  e.  Ring )
161, 15syl 15 . . 3  |-  ( ph  ->  R  e.  Ring )
1712, 13, 6, 3, 14, 16mvrfval 16165 . 2  |-  ( ph  ->  V  =  ( x  e.  I  |->  ( y  e.  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }  |->  if ( y  =  ( z  e.  I  |->  if ( z  =  x ,  1 ,  0 ) ) ,  ( 1r `  R ) ,  ( 0g `  R ) ) ) ) )
18 eqid 2283 . . 3  |-  ( I mVar 
H )  =  ( I mVar  H )
19 eqid 2283 . . 3  |-  ( 0g
`  H )  =  ( 0g `  H
)
20 eqid 2283 . . 3  |-  ( 1r
`  H )  =  ( 1r `  H
)
21 ovex 5883 . . . . 5  |-  ( Rs  T )  e.  _V
222, 21eqeltri 2353 . . . 4  |-  H  e. 
_V
2322a1i 10 . . 3  |-  ( ph  ->  H  e.  _V )
2418, 13, 19, 20, 14, 23mvrfval 16165 . 2  |-  ( ph  ->  ( I mVar  H )  =  ( x  e.  I  |->  ( y  e. 
{ f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }  |->  if ( y  =  ( z  e.  I  |->  if ( z  =  x ,  1 ,  0 ) ) ,  ( 1r
`  H ) ,  ( 0g `  H
) ) ) ) )
2511, 17, 243eqtr4d 2325 1  |-  ( ph  ->  V  =  ( I mVar 
H ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1623    e. wcel 1684   {crab 2547   _Vcvv 2788   ifcif 3565    e. cmpt 4077   `'ccnv 4688   "cima 4692   ` cfv 5255  (class class class)co 5858    ^m cmap 6772   Fincfn 6863   0cc0 8737   1c1 8738   NNcn 9746   NN0cn0 9965   ↾s cress 13149   0gc0g 13400   Ringcrg 15337   1rcur 15339  SubRingcsubrg 15541   mVar cmvr 16088
This theorem is referenced by:  subrgmvrf  16206  subrgvr1  16338
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-3 9805  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-0g 13404  df-mnd 14367  df-grp 14489  df-subg 14618  df-mgp 15326  df-rng 15340  df-ur 15342  df-subrg 15543  df-mvr 16099
  Copyright terms: Public domain W3C validator