Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subrval Structured version   Unicode version

Theorem subrval 27650
Description: Value of the operation of vector subtraction. (Contributed by Andrew Salmon, 27-Jan-2012.)
Assertion
Ref Expression
subrval  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A - r B )  =  ( v  e.  RR  |->  ( ( A `  v
)  -  ( B `
 v ) ) ) )
Distinct variable groups:    v, A    v, B
Allowed substitution hints:    C( v)    D( v)

Proof of Theorem subrval
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2966 . 2  |-  ( A  e.  C  ->  A  e.  _V )
2 elex 2966 . 2  |-  ( B  e.  D  ->  B  e.  _V )
3 fveq1 5729 . . . . 5  |-  ( x  =  A  ->  (
x `  v )  =  ( A `  v ) )
4 fveq1 5729 . . . . 5  |-  ( y  =  B  ->  (
y `  v )  =  ( B `  v ) )
53, 4oveqan12d 6102 . . . 4  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ( x `  v )  -  (
y `  v )
)  =  ( ( A `  v )  -  ( B `  v ) ) )
65mpteq2dv 4298 . . 3  |-  ( ( x  =  A  /\  y  =  B )  ->  ( v  e.  RR  |->  ( ( x `  v )  -  (
y `  v )
) )  =  ( v  e.  RR  |->  ( ( A `  v
)  -  ( B `
 v ) ) ) )
7 df-subr 27647 . . 3  |-  - r  =  ( x  e. 
_V ,  y  e. 
_V  |->  ( v  e.  RR  |->  ( ( x `
 v )  -  ( y `  v
) ) ) )
8 reex 9083 . . . 4  |-  RR  e.  _V
98mptex 5968 . . 3  |-  ( v  e.  RR  |->  ( ( A `  v )  -  ( B `  v ) ) )  e.  _V
106, 7, 9ovmpt2a 6206 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( A - r B )  =  ( v  e.  RR  |->  ( ( A `  v
)  -  ( B `
 v ) ) ) )
111, 2, 10syl2an 465 1  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A - r B )  =  ( v  e.  RR  |->  ( ( A `  v
)  -  ( B `
 v ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    = wceq 1653    e. wcel 1726   _Vcvv 2958    e. cmpt 4268   ` cfv 5456  (class class class)co 6083   RRcr 8991    - cmin 9293   - rcminusr 27641
This theorem is referenced by:  subrfv  27653  subrfn  27656
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pr 4405  ax-cnex 9048  ax-resscn 9049
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-id 4500  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-subr 27647
  Copyright terms: Public domain W3C validator