MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subsubrg Unicode version

Theorem subsubrg 15571
Description: A subring of a subring is a subring. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypothesis
Ref Expression
subsubrg.s  |-  S  =  ( Rs  A )
Assertion
Ref Expression
subsubrg  |-  ( A  e.  (SubRing `  R
)  ->  ( B  e.  (SubRing `  S )  <->  ( B  e.  (SubRing `  R
)  /\  B  C_  A
) ) )

Proof of Theorem subsubrg
StepHypRef Expression
1 subrgrcl 15550 . . . . . 6  |-  ( A  e.  (SubRing `  R
)  ->  R  e.  Ring )
21adantr 451 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  B  e.  (SubRing `  S ) )  ->  R  e.  Ring )
3 eqid 2283 . . . . . . . . . 10  |-  ( Base `  S )  =  (
Base `  S )
43subrgss 15546 . . . . . . . . 9  |-  ( B  e.  (SubRing `  S
)  ->  B  C_  ( Base `  S ) )
54adantl 452 . . . . . . . 8  |-  ( ( A  e.  (SubRing `  R
)  /\  B  e.  (SubRing `  S ) )  ->  B  C_  ( Base `  S ) )
6 subsubrg.s . . . . . . . . . 10  |-  S  =  ( Rs  A )
76subrgbas 15554 . . . . . . . . 9  |-  ( A  e.  (SubRing `  R
)  ->  A  =  ( Base `  S )
)
87adantr 451 . . . . . . . 8  |-  ( ( A  e.  (SubRing `  R
)  /\  B  e.  (SubRing `  S ) )  ->  A  =  (
Base `  S )
)
95, 8sseqtr4d 3215 . . . . . . 7  |-  ( ( A  e.  (SubRing `  R
)  /\  B  e.  (SubRing `  S ) )  ->  B  C_  A
)
106oveq1i 5868 . . . . . . . 8  |-  ( Ss  B )  =  ( ( Rs  A )s  B )
11 ressabs 13206 . . . . . . . 8  |-  ( ( A  e.  (SubRing `  R
)  /\  B  C_  A
)  ->  ( ( Rs  A )s  B )  =  ( Rs  B ) )
1210, 11syl5eq 2327 . . . . . . 7  |-  ( ( A  e.  (SubRing `  R
)  /\  B  C_  A
)  ->  ( Ss  B
)  =  ( Rs  B ) )
139, 12syldan 456 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  B  e.  (SubRing `  S ) )  ->  ( Ss  B )  =  ( Rs  B ) )
14 eqid 2283 . . . . . . . 8  |-  ( Ss  B )  =  ( Ss  B )
1514subrgrng 15548 . . . . . . 7  |-  ( B  e.  (SubRing `  S
)  ->  ( Ss  B
)  e.  Ring )
1615adantl 452 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  B  e.  (SubRing `  S ) )  ->  ( Ss  B )  e.  Ring )
1713, 16eqeltrrd 2358 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  B  e.  (SubRing `  S ) )  ->  ( Rs  B )  e.  Ring )
182, 17jca 518 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  B  e.  (SubRing `  S ) )  ->  ( R  e. 
Ring  /\  ( Rs  B )  e.  Ring ) )
19 eqid 2283 . . . . . . . 8  |-  ( Base `  R )  =  (
Base `  R )
2019subrgss 15546 . . . . . . 7  |-  ( A  e.  (SubRing `  R
)  ->  A  C_  ( Base `  R ) )
2120adantr 451 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  B  e.  (SubRing `  S ) )  ->  A  C_  ( Base `  R ) )
229, 21sstrd 3189 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  B  e.  (SubRing `  S ) )  ->  B  C_  ( Base `  R ) )
23 eqid 2283 . . . . . . . 8  |-  ( 1r
`  R )  =  ( 1r `  R
)
246, 23subrg1 15555 . . . . . . 7  |-  ( A  e.  (SubRing `  R
)  ->  ( 1r `  R )  =  ( 1r `  S ) )
2524adantr 451 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  B  e.  (SubRing `  S ) )  ->  ( 1r `  R )  =  ( 1r `  S ) )
26 eqid 2283 . . . . . . . 8  |-  ( 1r
`  S )  =  ( 1r `  S
)
2726subrg1cl 15553 . . . . . . 7  |-  ( B  e.  (SubRing `  S
)  ->  ( 1r `  S )  e.  B
)
2827adantl 452 . . . . . 6  |-  ( ( A  e.  (SubRing `  R
)  /\  B  e.  (SubRing `  S ) )  ->  ( 1r `  S )  e.  B
)
2925, 28eqeltrd 2357 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  B  e.  (SubRing `  S ) )  ->  ( 1r `  R )  e.  B
)
3022, 29jca 518 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  B  e.  (SubRing `  S ) )  ->  ( B  C_  ( Base `  R )  /\  ( 1r `  R
)  e.  B ) )
3119, 23issubrg 15545 . . . 4  |-  ( B  e.  (SubRing `  R
)  <->  ( ( R  e.  Ring  /\  ( Rs  B )  e.  Ring )  /\  ( B  C_  ( Base `  R )  /\  ( 1r `  R
)  e.  B ) ) )
3218, 30, 31sylanbrc 645 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  B  e.  (SubRing `  S ) )  ->  B  e.  (SubRing `  R ) )
3332, 9jca 518 . 2  |-  ( ( A  e.  (SubRing `  R
)  /\  B  e.  (SubRing `  S ) )  ->  ( B  e.  (SubRing `  R )  /\  B  C_  A ) )
346subrgrng 15548 . . . . 5  |-  ( A  e.  (SubRing `  R
)  ->  S  e.  Ring )
3534adantr 451 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  ( B  e.  (SubRing `  R )  /\  B  C_  A ) )  ->  S  e.  Ring )
3612adantrl 696 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  ( B  e.  (SubRing `  R )  /\  B  C_  A ) )  ->  ( Ss  B
)  =  ( Rs  B ) )
37 eqid 2283 . . . . . . 7  |-  ( Rs  B )  =  ( Rs  B )
3837subrgrng 15548 . . . . . 6  |-  ( B  e.  (SubRing `  R
)  ->  ( Rs  B
)  e.  Ring )
3938ad2antrl 708 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  ( B  e.  (SubRing `  R )  /\  B  C_  A ) )  ->  ( Rs  B
)  e.  Ring )
4036, 39eqeltrd 2357 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  ( B  e.  (SubRing `  R )  /\  B  C_  A ) )  ->  ( Ss  B
)  e.  Ring )
4135, 40jca 518 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  ( B  e.  (SubRing `  R )  /\  B  C_  A ) )  ->  ( S  e.  Ring  /\  ( Ss  B
)  e.  Ring )
)
42 simprr 733 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  ( B  e.  (SubRing `  R )  /\  B  C_  A ) )  ->  B  C_  A
)
437adantr 451 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  ( B  e.  (SubRing `  R )  /\  B  C_  A ) )  ->  A  =  ( Base `  S )
)
4442, 43sseqtrd 3214 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  ( B  e.  (SubRing `  R )  /\  B  C_  A ) )  ->  B  C_  ( Base `  S ) )
4524adantr 451 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  ( B  e.  (SubRing `  R )  /\  B  C_  A ) )  ->  ( 1r `  R )  =  ( 1r `  S ) )
4623subrg1cl 15553 . . . . . 6  |-  ( B  e.  (SubRing `  R
)  ->  ( 1r `  R )  e.  B
)
4746ad2antrl 708 . . . . 5  |-  ( ( A  e.  (SubRing `  R
)  /\  ( B  e.  (SubRing `  R )  /\  B  C_  A ) )  ->  ( 1r `  R )  e.  B
)
4845, 47eqeltrrd 2358 . . . 4  |-  ( ( A  e.  (SubRing `  R
)  /\  ( B  e.  (SubRing `  R )  /\  B  C_  A ) )  ->  ( 1r `  S )  e.  B
)
4944, 48jca 518 . . 3  |-  ( ( A  e.  (SubRing `  R
)  /\  ( B  e.  (SubRing `  R )  /\  B  C_  A ) )  ->  ( B  C_  ( Base `  S
)  /\  ( 1r `  S )  e.  B
) )
503, 26issubrg 15545 . . 3  |-  ( B  e.  (SubRing `  S
)  <->  ( ( S  e.  Ring  /\  ( Ss  B )  e.  Ring )  /\  ( B  C_  ( Base `  S )  /\  ( 1r `  S
)  e.  B ) ) )
5141, 49, 50sylanbrc 645 . 2  |-  ( ( A  e.  (SubRing `  R
)  /\  ( B  e.  (SubRing `  R )  /\  B  C_  A ) )  ->  B  e.  (SubRing `  S ) )
5233, 51impbida 805 1  |-  ( A  e.  (SubRing `  R
)  ->  ( B  e.  (SubRing `  S )  <->  ( B  e.  (SubRing `  R
)  /\  B  C_  A
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684    C_ wss 3152   ` cfv 5255  (class class class)co 5858   Basecbs 13148   ↾s cress 13149   Ringcrg 15337   1rcur 15339  SubRingcsubrg 15541
This theorem is referenced by:  subsubrg2  15572  subrgmpl  16204  mplbas2  16212  mplind  16243  zrngunit  16438
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-3 9805  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-0g 13404  df-mnd 14367  df-subg 14618  df-mgp 15326  df-rng 15340  df-ur 15342  df-subrg 15543
  Copyright terms: Public domain W3C validator