Users' Mathboxes Mathbox for Anthony Hart < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subsym1 Structured version   Unicode version

Theorem subsym1 26182
Description: A symmetry with  [ x  /  y ].

See negsym1 26172 for more information. (Contributed by Anthony Hart, 11-Sep-2011.)

Assertion
Ref Expression
subsym1  |-  ( [ x  /  y ] [ x  /  y ]  F.  ->  [ x  /  y ] ph )

Proof of Theorem subsym1
StepHypRef Expression
1 fal 1332 . . . . . . . . . 10  |-  -.  F.
21intnan 882 . . . . . . . . 9  |-  -.  (
y  =  x  /\  F.  )
32nex 1565 . . . . . . . 8  |-  -.  E. y ( y  =  x  /\  F.  )
43intnan 882 . . . . . . 7  |-  -.  (
( y  =  x  ->  F.  )  /\  E. y ( y  =  x  /\  F.  )
)
5 df-sb 1660 . . . . . . 7  |-  ( [ x  /  y ]  F.  <->  ( ( y  =  x  ->  F.  )  /\  E. y ( y  =  x  /\  F.  ) ) )
64, 5mtbir 292 . . . . . 6  |-  -.  [
x  /  y ]  F.
76intnan 882 . . . . 5  |-  -.  (
y  =  x  /\  [ x  /  y ]  F.  )
87nex 1565 . . . 4  |-  -.  E. y ( y  =  x  /\  [ x  /  y ]  F.  )
98intnan 882 . . 3  |-  -.  (
( y  =  x  ->  [ x  / 
y ]  F.  )  /\  E. y ( y  =  x  /\  [
x  /  y ]  F.  ) )
10 df-sb 1660 . . 3  |-  ( [ x  /  y ] [ x  /  y ]  F.  <->  ( ( y  =  x  ->  [ x  /  y ]  F.  )  /\  E. y ( y  =  x  /\  [ x  /  y ]  F.  ) ) )
119, 10mtbir 292 . 2  |-  -.  [
x  /  y ] [ x  /  y ]  F.
1211pm2.21i 126 1  |-  ( [ x  /  y ] [ x  /  y ]  F.  ->  [ x  /  y ] ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    F. wfal 1327   E.wex 1551   [wsb 1659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556
This theorem depends on definitions:  df-bi 179  df-an 362  df-tru 1329  df-fal 1330  df-ex 1552  df-sb 1660
  Copyright terms: Public domain W3C validator