MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subval Unicode version

Theorem subval 9059
Description: Value of subtraction, which is the (unique) element  x such that  B  +  x  =  A. (Contributed by NM, 4-Aug-2007.) (Revised by Mario Carneiro, 2-Nov-2013.)
Assertion
Ref Expression
subval  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  -  B
)  =  ( iota_ x  e.  CC ( B  +  x )  =  A ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem subval
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq2 2305 . . 3  |-  ( y  =  A  ->  (
( z  +  x
)  =  y  <->  ( z  +  x )  =  A ) )
21riotabidv 6322 . 2  |-  ( y  =  A  ->  ( iota_ x  e.  CC ( z  +  x )  =  y )  =  ( iota_ x  e.  CC ( z  +  x
)  =  A ) )
3 oveq1 5881 . . . 4  |-  ( z  =  B  ->  (
z  +  x )  =  ( B  +  x ) )
43eqeq1d 2304 . . 3  |-  ( z  =  B  ->  (
( z  +  x
)  =  A  <->  ( B  +  x )  =  A ) )
54riotabidv 6322 . 2  |-  ( z  =  B  ->  ( iota_ x  e.  CC ( z  +  x )  =  A )  =  ( iota_ x  e.  CC ( B  +  x
)  =  A ) )
6 df-sub 9055 . 2  |-  -  =  ( y  e.  CC ,  z  e.  CC  |->  ( iota_ x  e.  CC ( z  +  x
)  =  y ) )
7 riotaex 6324 . 2  |-  ( iota_ x  e.  CC ( B  +  x )  =  A )  e.  _V
82, 5, 6, 7ovmpt2 5999 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  -  B
)  =  ( iota_ x  e.  CC ( B  +  x )  =  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696  (class class class)co 5874   iota_crio 6313   CCcc 8751    + caddc 8756    - cmin 9053
This theorem is referenced by:  subcl  9067  subf  9069  subadd  9070
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-iota 5235  df-fun 5273  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-riota 6320  df-sub 9055
  Copyright terms: Public domain W3C validator