MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suc11 Unicode version

Theorem suc11 4496
Description: The successor operation behaves like a one-to-one function. Compare Exercise 16 of [Enderton] p. 194. (Contributed by NM, 3-Sep-2003.)
Assertion
Ref Expression
suc11  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( suc  A  =  suc  B  <->  A  =  B ) )

Proof of Theorem suc11
StepHypRef Expression
1 eloni 4402 . . . . 5  |-  ( A  e.  On  ->  Ord  A )
2 ordn2lp 4412 . . . . . 6  |-  ( Ord 
A  ->  -.  ( A  e.  B  /\  B  e.  A )
)
3 ianor 474 . . . . . 6  |-  ( -.  ( A  e.  B  /\  B  e.  A
)  <->  ( -.  A  e.  B  \/  -.  B  e.  A )
)
42, 3sylib 188 . . . . 5  |-  ( Ord 
A  ->  ( -.  A  e.  B  \/  -.  B  e.  A
) )
51, 4syl 15 . . . 4  |-  ( A  e.  On  ->  ( -.  A  e.  B  \/  -.  B  e.  A
) )
65adantr 451 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( -.  A  e.  B  \/  -.  B  e.  A ) )
7 eqimss 3230 . . . . . 6  |-  ( suc 
A  =  suc  B  ->  suc  A  C_  suc  B )
8 sucssel 4485 . . . . . 6  |-  ( A  e.  On  ->  ( suc  A  C_  suc  B  ->  A  e.  suc  B ) )
97, 8syl5 28 . . . . 5  |-  ( A  e.  On  ->  ( suc  A  =  suc  B  ->  A  e.  suc  B
) )
10 elsuci 4458 . . . . . . 7  |-  ( A  e.  suc  B  -> 
( A  e.  B  \/  A  =  B
) )
1110ord 366 . . . . . 6  |-  ( A  e.  suc  B  -> 
( -.  A  e.  B  ->  A  =  B ) )
1211com12 27 . . . . 5  |-  ( -.  A  e.  B  -> 
( A  e.  suc  B  ->  A  =  B ) )
139, 12syl9 66 . . . 4  |-  ( A  e.  On  ->  ( -.  A  e.  B  ->  ( suc  A  =  suc  B  ->  A  =  B ) ) )
14 eqimss2 3231 . . . . . 6  |-  ( suc 
A  =  suc  B  ->  suc  B  C_  suc  A )
15 sucssel 4485 . . . . . 6  |-  ( B  e.  On  ->  ( suc  B  C_  suc  A  ->  B  e.  suc  A ) )
1614, 15syl5 28 . . . . 5  |-  ( B  e.  On  ->  ( suc  A  =  suc  B  ->  B  e.  suc  A
) )
17 elsuci 4458 . . . . . . . 8  |-  ( B  e.  suc  A  -> 
( B  e.  A  \/  B  =  A
) )
1817ord 366 . . . . . . 7  |-  ( B  e.  suc  A  -> 
( -.  B  e.  A  ->  B  =  A ) )
1918com12 27 . . . . . 6  |-  ( -.  B  e.  A  -> 
( B  e.  suc  A  ->  B  =  A ) )
20 eqcom 2285 . . . . . 6  |-  ( B  =  A  <->  A  =  B )
2119, 20syl6ib 217 . . . . 5  |-  ( -.  B  e.  A  -> 
( B  e.  suc  A  ->  A  =  B ) )
2216, 21syl9 66 . . . 4  |-  ( B  e.  On  ->  ( -.  B  e.  A  ->  ( suc  A  =  suc  B  ->  A  =  B ) ) )
2313, 22jaao 495 . . 3  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( ( -.  A  e.  B  \/  -.  B  e.  A )  ->  ( suc  A  =  suc  B  ->  A  =  B ) ) )
246, 23mpd 14 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( suc  A  =  suc  B  ->  A  =  B ) )
25 suceq 4457 . 2  |-  ( A  =  B  ->  suc  A  =  suc  B )
2624, 25impbid1 194 1  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( suc  A  =  suc  B  <->  A  =  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    = wceq 1623    e. wcel 1684    C_ wss 3152   Ord word 4391   Oncon0 4392   suc csuc 4394
This theorem is referenced by:  peano4  4678  limenpsi  7036  fin1a2lem2  8027  sltval2  24310  sltsolem1  24322  onsuct0  24880  bnj168  28758
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-tr 4114  df-eprel 4305  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-suc 4398
  Copyright terms: Public domain W3C validator