MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sucel Unicode version

Theorem sucel 4481
Description: Membership of a successor in another class. (Contributed by NM, 29-Jun-2004.)
Assertion
Ref Expression
sucel  |-  ( suc 
A  e.  B  <->  E. x  e.  B  A. y
( y  e.  x  <->  ( y  e.  A  \/  y  =  A )
) )
Distinct variable groups:    x, y, A    x, B
Allowed substitution hint:    B( y)

Proof of Theorem sucel
StepHypRef Expression
1 risset 2603 . 2  |-  ( suc 
A  e.  B  <->  E. x  e.  B  x  =  suc  A )
2 dfcleq 2290 . . . 4  |-  ( x  =  suc  A  <->  A. y
( y  e.  x  <->  y  e.  suc  A ) )
3 vex 2804 . . . . . . 7  |-  y  e. 
_V
43elsuc 4477 . . . . . 6  |-  ( y  e.  suc  A  <->  ( y  e.  A  \/  y  =  A ) )
54bibi2i 304 . . . . 5  |-  ( ( y  e.  x  <->  y  e.  suc  A )  <->  ( y  e.  x  <->  ( y  e.  A  \/  y  =  A ) ) )
65albii 1556 . . . 4  |-  ( A. y ( y  e.  x  <->  y  e.  suc  A )  <->  A. y ( y  e.  x  <->  ( y  e.  A  \/  y  =  A ) ) )
72, 6bitri 240 . . 3  |-  ( x  =  suc  A  <->  A. y
( y  e.  x  <->  ( y  e.  A  \/  y  =  A )
) )
87rexbii 2581 . 2  |-  ( E. x  e.  B  x  =  suc  A  <->  E. x  e.  B  A. y
( y  e.  x  <->  ( y  e.  A  \/  y  =  A )
) )
91, 8bitri 240 1  |-  ( suc 
A  e.  B  <->  E. x  e.  B  A. y
( y  e.  x  <->  ( y  e.  A  \/  y  =  A )
) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    \/ wo 357   A.wal 1530    = wceq 1632    e. wcel 1696   E.wrex 2557   suc csuc 4410
This theorem is referenced by:  axinf2  7357  zfinf2  7359
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-rex 2562  df-v 2803  df-un 3170  df-sn 3659  df-suc 4414
  Copyright terms: Public domain W3C validator