MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sucexb Unicode version

Theorem sucexb 4600
Description: A successor exists iff its class argument exists. (Contributed by NM, 22-Jun-1998.)
Assertion
Ref Expression
sucexb  |-  ( A  e.  _V  <->  suc  A  e. 
_V )

Proof of Theorem sucexb
StepHypRef Expression
1 unexb 4520 . 2  |-  ( ( A  e.  _V  /\  { A }  e.  _V ) 
<->  ( A  u.  { A } )  e.  _V )
2 snex 4216 . . 3  |-  { A }  e.  _V
32biantru 491 . 2  |-  ( A  e.  _V  <->  ( A  e.  _V  /\  { A }  e.  _V )
)
4 df-suc 4398 . . 3  |-  suc  A  =  ( A  u.  { A } )
54eleq1i 2346 . 2  |-  ( suc 
A  e.  _V  <->  ( A  u.  { A } )  e.  _V )
61, 3, 53bitr4i 268 1  |-  ( A  e.  _V  <->  suc  A  e. 
_V )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    e. wcel 1684   _Vcvv 2788    u. cun 3150   {csn 3640   suc csuc 4394
This theorem is referenced by:  sucexg  4601  sucelon  4608  ordsucelsuc  4613  oeordi  6585  suc11reg  7320  rankxpsuc  7552  isf32lem2  7980  limsucncmpi  24884
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-rex 2549  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-sn 3646  df-pr 3647  df-uni 3828  df-suc 4398
  Copyright terms: Public domain W3C validator