MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sucssel Unicode version

Theorem sucssel 4607
Description: A set whose successor is a subset of another class is a member of that class. (Contributed by NM, 16-Sep-1995.)
Assertion
Ref Expression
sucssel  |-  ( A  e.  V  ->  ( suc  A  C_  B  ->  A  e.  B ) )

Proof of Theorem sucssel
StepHypRef Expression
1 sucidg 4593 . 2  |-  ( A  e.  V  ->  A  e.  suc  A )
2 ssel 3278 . 2  |-  ( suc 
A  C_  B  ->  ( A  e.  suc  A  ->  A  e.  B ) )
31, 2syl5com 28 1  |-  ( A  e.  V  ->  ( suc  A  C_  B  ->  A  e.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1717    C_ wss 3256   suc csuc 4517
This theorem is referenced by:  suc11  4618  ordelsuc  4733  ordsucelsuc  4735  oaordi  6718  nnaordi  6790  unbnn2  7293  ackbij1b  8045  ackbij2  8049  cflm  8056  isf32lem2  8160  indpi  8710  dfon2lem3  25158
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-v 2894  df-un 3261  df-in 3263  df-ss 3270  df-sn 3756  df-suc 4521
  Copyright terms: Public domain W3C validator