Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  suctrALT2 Unicode version

Theorem suctrALT2 28613
Description: Virtual deduction proof of suctr 4475. The sucessor of a transitive class is transitive. This proof was generated automatically from the virtual deduction proof suctrALT2VD 28612 using the tools command file translatewithout_overwritingminimize_excludingduplicates.cmd . (Contributed by Alan Sare, 11-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
suctrALT2  |-  ( Tr  A  ->  Tr  suc  A
)

Proof of Theorem suctrALT2
Dummy variables  z 
y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sssucid 4469 . . . . 5  |-  A  C_  suc  A
2 trel 4120 . . . . . . 7  |-  ( Tr  A  ->  ( (
z  e.  y  /\  y  e.  A )  ->  z  e.  A ) )
32exp3a 425 . . . . . 6  |-  ( Tr  A  ->  ( z  e.  y  ->  ( y  e.  A  ->  z  e.  A ) ) )
43adantrd 454 . . . . 5  |-  ( Tr  A  ->  ( (
z  e.  y  /\  y  e.  suc  A )  ->  ( y  e.  A  ->  z  e.  A ) ) )
5 ssel 3174 . . . . 5  |-  ( A 
C_  suc  A  ->  ( z  e.  A  -> 
z  e.  suc  A
) )
61, 4, 5ee03 28516 . . . 4  |-  ( Tr  A  ->  ( (
z  e.  y  /\  y  e.  suc  A )  ->  ( y  e.  A  ->  z  e.  suc  A ) ) )
7 simpl 443 . . . . . . 7  |-  ( ( z  e.  y  /\  y  e.  suc  A )  ->  z  e.  y )
87a1i 10 . . . . . 6  |-  ( Tr  A  ->  ( (
z  e.  y  /\  y  e.  suc  A )  ->  z  e.  y ) )
9 eleq2 2344 . . . . . . 7  |-  ( y  =  A  ->  (
z  e.  y  <->  z  e.  A ) )
109biimpcd 215 . . . . . 6  |-  ( z  e.  y  ->  (
y  =  A  -> 
z  e.  A ) )
118, 10syl6 29 . . . . 5  |-  ( Tr  A  ->  ( (
z  e.  y  /\  y  e.  suc  A )  ->  ( y  =  A  ->  z  e.  A ) ) )
121, 11, 5ee03 28516 . . . 4  |-  ( Tr  A  ->  ( (
z  e.  y  /\  y  e.  suc  A )  ->  ( y  =  A  ->  z  e.  suc  A ) ) )
13 simpr 447 . . . . . 6  |-  ( ( z  e.  y  /\  y  e.  suc  A )  ->  y  e.  suc  A )
1413a1i 10 . . . . 5  |-  ( Tr  A  ->  ( (
z  e.  y  /\  y  e.  suc  A )  ->  y  e.  suc  A ) )
15 elsuci 4458 . . . . 5  |-  ( y  e.  suc  A  -> 
( y  e.  A  \/  y  =  A
) )
1614, 15syl6 29 . . . 4  |-  ( Tr  A  ->  ( (
z  e.  y  /\  y  e.  suc  A )  ->  ( y  e.  A  \/  y  =  A ) ) )
17 jao 498 . . . 4  |-  ( ( y  e.  A  -> 
z  e.  suc  A
)  ->  ( (
y  =  A  -> 
z  e.  suc  A
)  ->  ( (
y  e.  A  \/  y  =  A )  ->  z  e.  suc  A
) ) )
186, 12, 16, 17ee222 28263 . . 3  |-  ( Tr  A  ->  ( (
z  e.  y  /\  y  e.  suc  A )  ->  z  e.  suc  A ) )
1918alrimivv 1618 . 2  |-  ( Tr  A  ->  A. z A. y ( ( z  e.  y  /\  y  e.  suc  A )  -> 
z  e.  suc  A
) )
20 dftr2 4115 . 2  |-  ( Tr 
suc  A  <->  A. z A. y
( ( z  e.  y  /\  y  e. 
suc  A )  -> 
z  e.  suc  A
) )
2119, 20sylibr 203 1  |-  ( Tr  A  ->  Tr  suc  A
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 357    /\ wa 358   A.wal 1527    = wceq 1623    e. wcel 1684    C_ wss 3152   Tr wtr 4113   suc csuc 4394
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-v 2790  df-un 3157  df-in 3159  df-ss 3166  df-sn 3646  df-uni 3828  df-tr 4114  df-suc 4398
  Copyright terms: Public domain W3C validator