MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sumdchr2 Structured version   Unicode version

Theorem sumdchr2 21056
Description: Lemma for sumdchr 21058. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
sumdchr.g  |-  G  =  (DChr `  N )
sumdchr.d  |-  D  =  ( Base `  G
)
sumdchr2.z  |-  Z  =  (ℤ/n `  N )
sumdchr2.1  |-  .1.  =  ( 1r `  Z )
sumdchr2.b  |-  B  =  ( Base `  Z
)
sumdchr2.n  |-  ( ph  ->  N  e.  NN )
sumdchr2.x  |-  ( ph  ->  A  e.  B )
Assertion
Ref Expression
sumdchr2  |-  ( ph  -> 
sum_ x  e.  D  ( x `  A
)  =  if ( A  =  .1.  , 
( # `  D ) ,  0 ) )
Distinct variable groups:    x,  .1.    x, A    x, D    x, N    x, G    ph, x
Allowed substitution hints:    B( x)    Z( x)

Proof of Theorem sumdchr2
Dummy variables  y 
z  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq2 2447 . 2  |-  ( (
# `  D )  =  if ( A  =  .1.  ,  ( # `  D ) ,  0 )  ->  ( sum_ x  e.  D  ( x `
 A )  =  ( # `  D
)  <->  sum_ x  e.  D  ( x `  A
)  =  if ( A  =  .1.  , 
( # `  D ) ,  0 ) ) )
2 eqeq2 2447 . 2  |-  ( 0  =  if ( A  =  .1.  ,  (
# `  D ) ,  0 )  -> 
( sum_ x  e.  D  ( x `  A
)  =  0  <->  sum_ x  e.  D  ( x `
 A )  =  if ( A  =  .1.  ,  ( # `  D ) ,  0 ) ) )
3 fveq2 5730 . . . . . 6  |-  ( A  =  .1.  ->  (
x `  A )  =  ( x `  .1.  ) )
4 sumdchr.g . . . . . . . . 9  |-  G  =  (DChr `  N )
5 sumdchr2.z . . . . . . . . 9  |-  Z  =  (ℤ/n `  N )
6 sumdchr.d . . . . . . . . 9  |-  D  =  ( Base `  G
)
74, 5, 6dchrmhm 21027 . . . . . . . 8  |-  D  C_  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld ) )
8 simpr 449 . . . . . . . 8  |-  ( (
ph  /\  x  e.  D )  ->  x  e.  D )
97, 8sseldi 3348 . . . . . . 7  |-  ( (
ph  /\  x  e.  D )  ->  x  e.  ( (mulGrp `  Z
) MndHom  (mulGrp ` fld ) ) )
10 eqid 2438 . . . . . . . . 9  |-  (mulGrp `  Z )  =  (mulGrp `  Z )
11 sumdchr2.1 . . . . . . . . 9  |-  .1.  =  ( 1r `  Z )
1210, 11rngidval 15668 . . . . . . . 8  |-  .1.  =  ( 0g `  (mulGrp `  Z ) )
13 eqid 2438 . . . . . . . . 9  |-  (mulGrp ` fld )  =  (mulGrp ` fld )
14 cnfld1 16728 . . . . . . . . 9  |-  1  =  ( 1r ` fld )
1513, 14rngidval 15668 . . . . . . . 8  |-  1  =  ( 0g `  (mulGrp ` fld ) )
1612, 15mhm0 14748 . . . . . . 7  |-  ( x  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld ) )  ->  (
x `  .1.  )  =  1 )
179, 16syl 16 . . . . . 6  |-  ( (
ph  /\  x  e.  D )  ->  (
x `  .1.  )  =  1 )
183, 17sylan9eqr 2492 . . . . 5  |-  ( ( ( ph  /\  x  e.  D )  /\  A  =  .1.  )  ->  (
x `  A )  =  1 )
1918an32s 781 . . . 4  |-  ( ( ( ph  /\  A  =  .1.  )  /\  x  e.  D )  ->  (
x `  A )  =  1 )
2019sumeq2dv 12499 . . 3  |-  ( (
ph  /\  A  =  .1.  )  ->  sum_ x  e.  D  ( x `  A )  =  sum_ x  e.  D  1 )
21 sumdchr2.n . . . . . . 7  |-  ( ph  ->  N  e.  NN )
224, 6dchrfi 21041 . . . . . . 7  |-  ( N  e.  NN  ->  D  e.  Fin )
2321, 22syl 16 . . . . . 6  |-  ( ph  ->  D  e.  Fin )
24 ax-1cn 9050 . . . . . 6  |-  1  e.  CC
25 fsumconst 12575 . . . . . 6  |-  ( ( D  e.  Fin  /\  1  e.  CC )  -> 
sum_ x  e.  D 
1  =  ( (
# `  D )  x.  1 ) )
2623, 24, 25sylancl 645 . . . . 5  |-  ( ph  -> 
sum_ x  e.  D 
1  =  ( (
# `  D )  x.  1 ) )
27 hashcl 11641 . . . . . . . 8  |-  ( D  e.  Fin  ->  ( # `
 D )  e. 
NN0 )
2821, 22, 273syl 19 . . . . . . 7  |-  ( ph  ->  ( # `  D
)  e.  NN0 )
2928nn0cnd 10278 . . . . . 6  |-  ( ph  ->  ( # `  D
)  e.  CC )
3029mulid1d 9107 . . . . 5  |-  ( ph  ->  ( ( # `  D
)  x.  1 )  =  ( # `  D
) )
3126, 30eqtrd 2470 . . . 4  |-  ( ph  -> 
sum_ x  e.  D 
1  =  ( # `  D ) )
3231adantr 453 . . 3  |-  ( (
ph  /\  A  =  .1.  )  ->  sum_ x  e.  D  1  =  ( # `  D ) )
3320, 32eqtrd 2470 . 2  |-  ( (
ph  /\  A  =  .1.  )  ->  sum_ x  e.  D  ( x `  A )  =  (
# `  D )
)
34 df-ne 2603 . . 3  |-  ( A  =/=  .1.  <->  -.  A  =  .1.  )
35 sumdchr2.b . . . . 5  |-  B  =  ( Base `  Z
)
3621adantr 453 . . . . 5  |-  ( (
ph  /\  A  =/=  .1.  )  ->  N  e.  NN )
37 simpr 449 . . . . 5  |-  ( (
ph  /\  A  =/=  .1.  )  ->  A  =/= 
.1.  )
38 sumdchr2.x . . . . . 6  |-  ( ph  ->  A  e.  B )
3938adantr 453 . . . . 5  |-  ( (
ph  /\  A  =/=  .1.  )  ->  A  e.  B )
404, 5, 6, 35, 11, 36, 37, 39dchrpt 21053 . . . 4  |-  ( (
ph  /\  A  =/=  .1.  )  ->  E. y  e.  D  ( y `  A )  =/=  1
)
4136adantr 453 . . . . . . 7  |-  ( ( ( ph  /\  A  =/=  .1.  )  /\  (
y  e.  D  /\  ( y `  A
)  =/=  1 ) )  ->  N  e.  NN )
4241, 22syl 16 . . . . . 6  |-  ( ( ( ph  /\  A  =/=  .1.  )  /\  (
y  e.  D  /\  ( y `  A
)  =/=  1 ) )  ->  D  e.  Fin )
43 simpr 449 . . . . . . . 8  |-  ( ( ( ( ph  /\  A  =/=  .1.  )  /\  ( y  e.  D  /\  ( y `  A
)  =/=  1 ) )  /\  x  e.  D )  ->  x  e.  D )
444, 5, 6, 35, 43dchrf 21028 . . . . . . 7  |-  ( ( ( ( ph  /\  A  =/=  .1.  )  /\  ( y  e.  D  /\  ( y `  A
)  =/=  1 ) )  /\  x  e.  D )  ->  x : B --> CC )
4539adantr 453 . . . . . . . 8  |-  ( ( ( ph  /\  A  =/=  .1.  )  /\  (
y  e.  D  /\  ( y `  A
)  =/=  1 ) )  ->  A  e.  B )
4645adantr 453 . . . . . . 7  |-  ( ( ( ( ph  /\  A  =/=  .1.  )  /\  ( y  e.  D  /\  ( y `  A
)  =/=  1 ) )  /\  x  e.  D )  ->  A  e.  B )
4744, 46ffvelrnd 5873 . . . . . 6  |-  ( ( ( ( ph  /\  A  =/=  .1.  )  /\  ( y  e.  D  /\  ( y `  A
)  =/=  1 ) )  /\  x  e.  D )  ->  (
x `  A )  e.  CC )
4842, 47fsumcl 12529 . . . . 5  |-  ( ( ( ph  /\  A  =/=  .1.  )  /\  (
y  e.  D  /\  ( y `  A
)  =/=  1 ) )  ->  sum_ x  e.  D  ( x `  A )  e.  CC )
49 0cn 9086 . . . . . 6  |-  0  e.  CC
5049a1i 11 . . . . 5  |-  ( ( ( ph  /\  A  =/=  .1.  )  /\  (
y  e.  D  /\  ( y `  A
)  =/=  1 ) )  ->  0  e.  CC )
51 simprl 734 . . . . . . . 8  |-  ( ( ( ph  /\  A  =/=  .1.  )  /\  (
y  e.  D  /\  ( y `  A
)  =/=  1 ) )  ->  y  e.  D )
524, 5, 6, 35, 51dchrf 21028 . . . . . . 7  |-  ( ( ( ph  /\  A  =/=  .1.  )  /\  (
y  e.  D  /\  ( y `  A
)  =/=  1 ) )  ->  y : B
--> CC )
5352, 45ffvelrnd 5873 . . . . . 6  |-  ( ( ( ph  /\  A  =/=  .1.  )  /\  (
y  e.  D  /\  ( y `  A
)  =/=  1 ) )  ->  ( y `  A )  e.  CC )
54 subcl 9307 . . . . . 6  |-  ( ( ( y `  A
)  e.  CC  /\  1  e.  CC )  ->  ( ( y `  A )  -  1 )  e.  CC )
5553, 24, 54sylancl 645 . . . . 5  |-  ( ( ( ph  /\  A  =/=  .1.  )  /\  (
y  e.  D  /\  ( y `  A
)  =/=  1 ) )  ->  ( (
y `  A )  -  1 )  e.  CC )
56 simprr 735 . . . . . 6  |-  ( ( ( ph  /\  A  =/=  .1.  )  /\  (
y  e.  D  /\  ( y `  A
)  =/=  1 ) )  ->  ( y `  A )  =/=  1
)
57 subeq0 9329 . . . . . . . 8  |-  ( ( ( y `  A
)  e.  CC  /\  1  e.  CC )  ->  ( ( ( y `
 A )  - 
1 )  =  0  <-> 
( y `  A
)  =  1 ) )
5853, 24, 57sylancl 645 . . . . . . 7  |-  ( ( ( ph  /\  A  =/=  .1.  )  /\  (
y  e.  D  /\  ( y `  A
)  =/=  1 ) )  ->  ( (
( y `  A
)  -  1 )  =  0  <->  ( y `  A )  =  1 ) )
5958necon3bid 2638 . . . . . 6  |-  ( ( ( ph  /\  A  =/=  .1.  )  /\  (
y  e.  D  /\  ( y `  A
)  =/=  1 ) )  ->  ( (
( y `  A
)  -  1 )  =/=  0  <->  ( y `  A )  =/=  1
) )
6056, 59mpbird 225 . . . . 5  |-  ( ( ( ph  /\  A  =/=  .1.  )  /\  (
y  e.  D  /\  ( y `  A
)  =/=  1 ) )  ->  ( (
y `  A )  -  1 )  =/=  0 )
61 oveq2 6091 . . . . . . . . . . . 12  |-  ( z  =  x  ->  (
y ( +g  `  G
) z )  =  ( y ( +g  `  G ) x ) )
6261fveq1d 5732 . . . . . . . . . . 11  |-  ( z  =  x  ->  (
( y ( +g  `  G ) z ) `
 A )  =  ( ( y ( +g  `  G ) x ) `  A
) )
6362cbvsumv 12492 . . . . . . . . . 10  |-  sum_ z  e.  D  ( (
y ( +g  `  G
) z ) `  A )  =  sum_ x  e.  D  ( ( y ( +g  `  G
) x ) `  A )
64 eqid 2438 . . . . . . . . . . . . . 14  |-  ( +g  `  G )  =  ( +g  `  G )
6551adantr 453 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  A  =/=  .1.  )  /\  ( y  e.  D  /\  ( y `  A
)  =/=  1 ) )  /\  x  e.  D )  ->  y  e.  D )
664, 5, 6, 64, 65, 43dchrmul 21034 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  A  =/=  .1.  )  /\  ( y  e.  D  /\  ( y `  A
)  =/=  1 ) )  /\  x  e.  D )  ->  (
y ( +g  `  G
) x )  =  ( y  o F  x.  x ) )
6766fveq1d 5732 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  A  =/=  .1.  )  /\  ( y  e.  D  /\  ( y `  A
)  =/=  1 ) )  /\  x  e.  D )  ->  (
( y ( +g  `  G ) x ) `
 A )  =  ( ( y  o F  x.  x ) `
 A ) )
6852adantr 453 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  A  =/=  .1.  )  /\  ( y  e.  D  /\  ( y `  A
)  =/=  1 ) )  /\  x  e.  D )  ->  y : B --> CC )
69 ffn 5593 . . . . . . . . . . . . . 14  |-  ( y : B --> CC  ->  y  Fn  B )
7068, 69syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  A  =/=  .1.  )  /\  ( y  e.  D  /\  ( y `  A
)  =/=  1 ) )  /\  x  e.  D )  ->  y  Fn  B )
71 ffn 5593 . . . . . . . . . . . . . 14  |-  ( x : B --> CC  ->  x  Fn  B )
7244, 71syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  A  =/=  .1.  )  /\  ( y  e.  D  /\  ( y `  A
)  =/=  1 ) )  /\  x  e.  D )  ->  x  Fn  B )
73 fvex 5744 . . . . . . . . . . . . . . 15  |-  ( Base `  Z )  e.  _V
7435, 73eqeltri 2508 . . . . . . . . . . . . . 14  |-  B  e. 
_V
7574a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  A  =/=  .1.  )  /\  ( y  e.  D  /\  ( y `  A
)  =/=  1 ) )  /\  x  e.  D )  ->  B  e.  _V )
76 fnfvof 6319 . . . . . . . . . . . . 13  |-  ( ( ( y  Fn  B  /\  x  Fn  B
)  /\  ( B  e.  _V  /\  A  e.  B ) )  -> 
( ( y  o F  x.  x ) `
 A )  =  ( ( y `  A )  x.  (
x `  A )
) )
7770, 72, 75, 46, 76syl22anc 1186 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  A  =/=  .1.  )  /\  ( y  e.  D  /\  ( y `  A
)  =/=  1 ) )  /\  x  e.  D )  ->  (
( y  o F  x.  x ) `  A )  =  ( ( y `  A
)  x.  ( x `
 A ) ) )
7867, 77eqtrd 2470 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  A  =/=  .1.  )  /\  ( y  e.  D  /\  ( y `  A
)  =/=  1 ) )  /\  x  e.  D )  ->  (
( y ( +g  `  G ) x ) `
 A )  =  ( ( y `  A )  x.  (
x `  A )
) )
7978sumeq2dv 12499 . . . . . . . . . 10  |-  ( ( ( ph  /\  A  =/=  .1.  )  /\  (
y  e.  D  /\  ( y `  A
)  =/=  1 ) )  ->  sum_ x  e.  D  ( ( y ( +g  `  G
) x ) `  A )  =  sum_ x  e.  D  ( ( y `  A )  x.  ( x `  A ) ) )
8063, 79syl5eq 2482 . . . . . . . . 9  |-  ( ( ( ph  /\  A  =/=  .1.  )  /\  (
y  e.  D  /\  ( y `  A
)  =/=  1 ) )  ->  sum_ z  e.  D  ( ( y ( +g  `  G
) z ) `  A )  =  sum_ x  e.  D  ( ( y `  A )  x.  ( x `  A ) ) )
81 fveq1 5729 . . . . . . . . . 10  |-  ( x  =  ( y ( +g  `  G ) z )  ->  (
x `  A )  =  ( ( y ( +g  `  G
) z ) `  A ) )
824dchrabl 21040 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  G  e.  Abel )
83 ablgrp 15419 . . . . . . . . . . . 12  |-  ( G  e.  Abel  ->  G  e. 
Grp )
8441, 82, 833syl 19 . . . . . . . . . . 11  |-  ( ( ( ph  /\  A  =/=  .1.  )  /\  (
y  e.  D  /\  ( y `  A
)  =/=  1 ) )  ->  G  e.  Grp )
85 eqid 2438 . . . . . . . . . . . 12  |-  ( a  e.  D  |->  ( b  e.  D  |->  ( a ( +g  `  G
) b ) ) )  =  ( a  e.  D  |->  ( b  e.  D  |->  ( a ( +g  `  G
) b ) ) )
8685, 6, 64grplactf1o 14890 . . . . . . . . . . 11  |-  ( ( G  e.  Grp  /\  y  e.  D )  ->  ( ( a  e.  D  |->  ( b  e.  D  |->  ( a ( +g  `  G ) b ) ) ) `
 y ) : D -1-1-onto-> D )
8784, 51, 86syl2anc 644 . . . . . . . . . 10  |-  ( ( ( ph  /\  A  =/=  .1.  )  /\  (
y  e.  D  /\  ( y `  A
)  =/=  1 ) )  ->  ( (
a  e.  D  |->  ( b  e.  D  |->  ( a ( +g  `  G
) b ) ) ) `  y ) : D -1-1-onto-> D )
8885, 6grplactval 14888 . . . . . . . . . . 11  |-  ( ( y  e.  D  /\  z  e.  D )  ->  ( ( ( a  e.  D  |->  ( b  e.  D  |->  ( a ( +g  `  G
) b ) ) ) `  y ) `
 z )  =  ( y ( +g  `  G ) z ) )
8951, 88sylan 459 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  A  =/=  .1.  )  /\  ( y  e.  D  /\  ( y `  A
)  =/=  1 ) )  /\  z  e.  D )  ->  (
( ( a  e.  D  |->  ( b  e.  D  |->  ( a ( +g  `  G ) b ) ) ) `
 y ) `  z )  =  ( y ( +g  `  G
) z ) )
9081, 42, 87, 89, 47fsumf1o 12519 . . . . . . . . 9  |-  ( ( ( ph  /\  A  =/=  .1.  )  /\  (
y  e.  D  /\  ( y `  A
)  =/=  1 ) )  ->  sum_ x  e.  D  ( x `  A )  =  sum_ z  e.  D  (
( y ( +g  `  G ) z ) `
 A ) )
9142, 53, 47fsummulc2 12569 . . . . . . . . 9  |-  ( ( ( ph  /\  A  =/=  .1.  )  /\  (
y  e.  D  /\  ( y `  A
)  =/=  1 ) )  ->  ( (
y `  A )  x.  sum_ x  e.  D  ( x `  A
) )  =  sum_ x  e.  D  ( ( y `  A )  x.  ( x `  A ) ) )
9280, 90, 913eqtr4rd 2481 . . . . . . . 8  |-  ( ( ( ph  /\  A  =/=  .1.  )  /\  (
y  e.  D  /\  ( y `  A
)  =/=  1 ) )  ->  ( (
y `  A )  x.  sum_ x  e.  D  ( x `  A
) )  =  sum_ x  e.  D  ( x `
 A ) )
9348mulid2d 9108 . . . . . . . 8  |-  ( ( ( ph  /\  A  =/=  .1.  )  /\  (
y  e.  D  /\  ( y `  A
)  =/=  1 ) )  ->  ( 1  x.  sum_ x  e.  D  ( x `  A
) )  =  sum_ x  e.  D  ( x `
 A ) )
9492, 93oveq12d 6101 . . . . . . 7  |-  ( ( ( ph  /\  A  =/=  .1.  )  /\  (
y  e.  D  /\  ( y `  A
)  =/=  1 ) )  ->  ( (
( y `  A
)  x.  sum_ x  e.  D  ( x `  A ) )  -  ( 1  x.  sum_ x  e.  D  ( x `
 A ) ) )  =  ( sum_ x  e.  D  ( x `
 A )  -  sum_ x  e.  D  ( x `  A ) ) )
9548subidd 9401 . . . . . . 7  |-  ( ( ( ph  /\  A  =/=  .1.  )  /\  (
y  e.  D  /\  ( y `  A
)  =/=  1 ) )  ->  ( sum_ x  e.  D  ( x `
 A )  -  sum_ x  e.  D  ( x `  A ) )  =  0 )
9694, 95eqtrd 2470 . . . . . 6  |-  ( ( ( ph  /\  A  =/=  .1.  )  /\  (
y  e.  D  /\  ( y `  A
)  =/=  1 ) )  ->  ( (
( y `  A
)  x.  sum_ x  e.  D  ( x `  A ) )  -  ( 1  x.  sum_ x  e.  D  ( x `
 A ) ) )  =  0 )
9724a1i 11 . . . . . . 7  |-  ( ( ( ph  /\  A  =/=  .1.  )  /\  (
y  e.  D  /\  ( y `  A
)  =/=  1 ) )  ->  1  e.  CC )
9853, 97, 48subdird 9492 . . . . . 6  |-  ( ( ( ph  /\  A  =/=  .1.  )  /\  (
y  e.  D  /\  ( y `  A
)  =/=  1 ) )  ->  ( (
( y `  A
)  -  1 )  x.  sum_ x  e.  D  ( x `  A
) )  =  ( ( ( y `  A )  x.  sum_ x  e.  D  ( x `
 A ) )  -  ( 1  x. 
sum_ x  e.  D  ( x `  A
) ) ) )
9955mul01d 9267 . . . . . 6  |-  ( ( ( ph  /\  A  =/=  .1.  )  /\  (
y  e.  D  /\  ( y `  A
)  =/=  1 ) )  ->  ( (
( y `  A
)  -  1 )  x.  0 )  =  0 )
10096, 98, 993eqtr4d 2480 . . . . 5  |-  ( ( ( ph  /\  A  =/=  .1.  )  /\  (
y  e.  D  /\  ( y `  A
)  =/=  1 ) )  ->  ( (
( y `  A
)  -  1 )  x.  sum_ x  e.  D  ( x `  A
) )  =  ( ( ( y `  A )  -  1 )  x.  0 ) )
10148, 50, 55, 60, 100mulcanad 9659 . . . 4  |-  ( ( ( ph  /\  A  =/=  .1.  )  /\  (
y  e.  D  /\  ( y `  A
)  =/=  1 ) )  ->  sum_ x  e.  D  ( x `  A )  =  0 )
10240, 101rexlimddv 2836 . . 3  |-  ( (
ph  /\  A  =/=  .1.  )  ->  sum_ x  e.  D  ( x `  A )  =  0 )
10334, 102sylan2br 464 . 2  |-  ( (
ph  /\  -.  A  =  .1.  )  ->  sum_ x  e.  D  ( x `  A )  =  0 )
1041, 2, 33, 103ifbothda 3771 1  |-  ( ph  -> 
sum_ x  e.  D  ( x `  A
)  =  if ( A  =  .1.  , 
( # `  D ) ,  0 ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1653    e. wcel 1726    =/= wne 2601   _Vcvv 2958   ifcif 3741    e. cmpt 4268    Fn wfn 5451   -->wf 5452   -1-1-onto->wf1o 5455   ` cfv 5456  (class class class)co 6083    o Fcof 6305   Fincfn 7111   CCcc 8990   0cc0 8992   1c1 8993    x. cmul 8997    - cmin 9293   NNcn 10002   NN0cn0 10223   #chash 11620   sum_csu 12481   Basecbs 13471   +g cplusg 13531   Grpcgrp 14687   MndHom cmhm 14738   Abelcabel 15415  mulGrpcmgp 15650   1rcur 15664  ℂfldccnfld 16705  ℤ/nczn 16783  DChrcdchr 21018
This theorem is referenced by:  dchrhash  21057  sumdchr  21058
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703  ax-inf2 7598  ax-cnex 9048  ax-resscn 9049  ax-1cn 9050  ax-icn 9051  ax-addcl 9052  ax-addrcl 9053  ax-mulcl 9054  ax-mulrcl 9055  ax-mulcom 9056  ax-addass 9057  ax-mulass 9058  ax-distr 9059  ax-i2m1 9060  ax-1ne0 9061  ax-1rid 9062  ax-rnegex 9063  ax-rrecex 9064  ax-cnre 9065  ax-pre-lttri 9066  ax-pre-lttrn 9067  ax-pre-ltadd 9068  ax-pre-mulgt0 9069  ax-pre-sup 9070  ax-addf 9071  ax-mulf 9072
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-iin 4098  df-disj 4185  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-se 4544  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-isom 5465  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-of 6307  df-1st 6351  df-2nd 6352  df-tpos 6481  df-rpss 6524  df-riota 6551  df-recs 6635  df-rdg 6670  df-1o 6726  df-2o 6727  df-oadd 6730  df-omul 6731  df-er 6907  df-ec 6909  df-qs 6913  df-map 7022  df-pm 7023  df-ixp 7066  df-en 7112  df-dom 7113  df-sdom 7114  df-fin 7115  df-fi 7418  df-sup 7448  df-oi 7481  df-card 7828  df-acn 7831  df-cda 8050  df-pnf 9124  df-mnf 9125  df-xr 9126  df-ltxr 9127  df-le 9128  df-sub 9295  df-neg 9296  df-div 9680  df-nn 10003  df-2 10060  df-3 10061  df-4 10062  df-5 10063  df-6 10064  df-7 10065  df-8 10066  df-9 10067  df-10 10068  df-n0 10224  df-z 10285  df-dec 10385  df-uz 10491  df-q 10577  df-rp 10615  df-xneg 10712  df-xadd 10713  df-xmul 10714  df-ioo 10922  df-ioc 10923  df-ico 10924  df-icc 10925  df-fz 11046  df-fzo 11138  df-fl 11204  df-mod 11253  df-seq 11326  df-exp 11385  df-fac 11569  df-bc 11596  df-hash 11621  df-word 11725  df-concat 11726  df-s1 11727  df-shft 11884  df-cj 11906  df-re 11907  df-im 11908  df-sqr 12042  df-abs 12043  df-limsup 12267  df-clim 12284  df-rlim 12285  df-sum 12482  df-ef 12672  df-sin 12674  df-cos 12675  df-pi 12677  df-dvds 12855  df-gcd 13009  df-prm 13082  df-phi 13157  df-pc 13213  df-struct 13473  df-ndx 13474  df-slot 13475  df-base 13476  df-sets 13477  df-ress 13478  df-plusg 13544  df-mulr 13545  df-starv 13546  df-sca 13547  df-vsca 13548  df-tset 13550  df-ple 13551  df-ds 13553  df-unif 13554  df-hom 13555  df-cco 13556  df-rest 13652  df-topn 13653  df-topgen 13669  df-pt 13670  df-prds 13673  df-xrs 13728  df-0g 13729  df-gsum 13730  df-qtop 13735  df-imas 13736  df-divs 13737  df-xps 13738  df-mre 13813  df-mrc 13814  df-acs 13816  df-mnd 14692  df-mhm 14740  df-submnd 14741  df-grp 14814  df-minusg 14815  df-sbg 14816  df-mulg 14817  df-subg 14943  df-nsg 14944  df-eqg 14945  df-ghm 15006  df-gim 15048  df-ga 15069  df-cntz 15118  df-oppg 15144  df-od 15169  df-gex 15170  df-pgp 15171  df-lsm 15272  df-pj1 15273  df-cmn 15416  df-abl 15417  df-cyg 15490  df-dprd 15558  df-dpj 15559  df-mgp 15651  df-rng 15665  df-cring 15666  df-ur 15667  df-oppr 15730  df-dvdsr 15748  df-unit 15749  df-invr 15779  df-rnghom 15821  df-subrg 15868  df-lmod 15954  df-lss 16011  df-lsp 16050  df-sra 16246  df-rgmod 16247  df-lidl 16248  df-rsp 16249  df-2idl 16305  df-psmet 16696  df-xmet 16697  df-met 16698  df-bl 16699  df-mopn 16700  df-fbas 16701  df-fg 16702  df-cnfld 16706  df-zrh 16784  df-zn 16787  df-top 16965  df-bases 16967  df-topon 16968  df-topsp 16969  df-cld 17085  df-ntr 17086  df-cls 17087  df-nei 17164  df-lp 17202  df-perf 17203  df-cn 17293  df-cnp 17294  df-haus 17381  df-tx 17596  df-hmeo 17789  df-fil 17880  df-fm 17972  df-flim 17973  df-flf 17974  df-xms 18352  df-ms 18353  df-tms 18354  df-cncf 18910  df-0p 19564  df-limc 19755  df-dv 19756  df-ply 20109  df-idp 20110  df-coe 20111  df-dgr 20112  df-quot 20210  df-log 20456  df-cxp 20457  df-dchr 21019
  Copyright terms: Public domain W3C validator