MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sumeq1i Structured version   Unicode version

Theorem sumeq1i 12484
Description: Equality inference for sum. (Contributed by NM, 2-Jan-2006.)
Hypothesis
Ref Expression
sumeq1i.1  |-  A  =  B
Assertion
Ref Expression
sumeq1i  |-  sum_ k  e.  A  C  =  sum_ k  e.  B  C
Distinct variable groups:    A, k    B, k
Allowed substitution hint:    C( k)

Proof of Theorem sumeq1i
StepHypRef Expression
1 sumeq1i.1 . 2  |-  A  =  B
2 sumeq1 12475 . 2  |-  ( A  =  B  ->  sum_ k  e.  A  C  =  sum_ k  e.  B  C
)
31, 2ax-mp 8 1  |-  sum_ k  e.  A  C  =  sum_ k  e.  B  C
Colors of variables: wff set class
Syntax hints:    = wceq 1652   sum_csu 12471
This theorem is referenced by:  sumeq12i  12486  fsump1i  12545  fsum2d  12547  fsumxp  12548  isumnn0nn  12614  arisum  12631  arisum2  12632  geo2sum  12642  efsep  12703  ef4p  12706  rpnnen2  12817  ovolicc2lem4  19408  itg10  19572  dveflem  19855  dvply1  20193  vieta1lem2  20220  aaliou3lem4  20255  dvtaylp  20278  pserdvlem2  20336  advlogexp  20538  log2ublem2  20779  log2ublem3  20780  log2ub  20781  ftalem5  20851  cht1  20940  1sgmprm  20975  lgsquadlem2  21131  axlowdimlem16  25888  bpoly0  26088  bpoly1  26089  bpoly2  26095  bpoly3  26096  bpoly4  26097  stoweidlem17  27733
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-mpt 4260  df-cnv 4878  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-recs 6625  df-rdg 6660  df-seq 11316  df-sum 12472
  Copyright terms: Public domain W3C validator