MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sumeq2ii Structured version   Unicode version

Theorem sumeq2ii 12489
Description: Equality theorem for sum, with the class expressions  B and  C guarded by  _I to be always sets. (Contributed by Mario Carneiro, 29-Mar-2014.)
Assertion
Ref Expression
sumeq2ii  |-  ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C
)  ->  sum_ k  e.  A  B  =  sum_ k  e.  A  C
)
Distinct variable group:    A, k
Allowed substitution hints:    B( k)    C( k)

Proof of Theorem sumeq2ii
Dummy variables  f  m  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 449 . . . . . . . 8  |-  ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  m  e.  ZZ )  ->  m  e.  ZZ )
2 nfra1 2758 . . . . . . . . . . . . 13  |-  F/ k A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )
3 rsp 2768 . . . . . . . . . . . . . . . . 17  |-  ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C
)  ->  ( k  e.  A  ->  (  _I 
`  B )  =  (  _I  `  C
) ) )
43adantr 453 . . . . . . . . . . . . . . . 16  |-  ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  k  e.  ZZ )  ->  (
k  e.  A  -> 
(  _I  `  B
)  =  (  _I 
`  C ) ) )
5 ifeq1 3745 . . . . . . . . . . . . . . . 16  |-  ( (  _I  `  B )  =  (  _I  `  C )  ->  if ( k  e.  A ,  (  _I  `  B
) ,  (  _I 
`  0 ) )  =  if ( k  e.  A ,  (  _I  `  C ) ,  (  _I  ` 
0 ) ) )
64, 5syl6 32 . . . . . . . . . . . . . . 15  |-  ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  k  e.  ZZ )  ->  (
k  e.  A  ->  if ( k  e.  A ,  (  _I  `  B
) ,  (  _I 
`  0 ) )  =  if ( k  e.  A ,  (  _I  `  C ) ,  (  _I  ` 
0 ) ) ) )
7 iffalse 3748 . . . . . . . . . . . . . . . 16  |-  ( -.  k  e.  A  ->  if ( k  e.  A ,  (  _I  `  B
) ,  (  _I 
`  0 ) )  =  (  _I  ` 
0 ) )
8 iffalse 3748 . . . . . . . . . . . . . . . 16  |-  ( -.  k  e.  A  ->  if ( k  e.  A ,  (  _I  `  C
) ,  (  _I 
`  0 ) )  =  (  _I  ` 
0 ) )
97, 8eqtr4d 2473 . . . . . . . . . . . . . . 15  |-  ( -.  k  e.  A  ->  if ( k  e.  A ,  (  _I  `  B
) ,  (  _I 
`  0 ) )  =  if ( k  e.  A ,  (  _I  `  C ) ,  (  _I  ` 
0 ) ) )
106, 9pm2.61d1 154 . . . . . . . . . . . . . 14  |-  ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  k  e.  ZZ )  ->  if ( k  e.  A ,  (  _I  `  B
) ,  (  _I 
`  0 ) )  =  if ( k  e.  A ,  (  _I  `  C ) ,  (  _I  ` 
0 ) ) )
11 fvif 5745 . . . . . . . . . . . . . 14  |-  (  _I 
`  if ( k  e.  A ,  B ,  0 ) )  =  if ( k  e.  A ,  (  _I  `  B ) ,  (  _I  ` 
0 ) )
12 fvif 5745 . . . . . . . . . . . . . 14  |-  (  _I 
`  if ( k  e.  A ,  C ,  0 ) )  =  if ( k  e.  A ,  (  _I  `  C ) ,  (  _I  ` 
0 ) )
1310, 11, 123eqtr4g 2495 . . . . . . . . . . . . 13  |-  ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  k  e.  ZZ )  ->  (  _I  `  if ( k  e.  A ,  B ,  0 ) )  =  (  _I  `  if ( k  e.  A ,  C ,  0 ) ) )
142, 13mpteq2da 4296 . . . . . . . . . . . 12  |-  ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C
)  ->  ( k  e.  ZZ  |->  (  _I  `  if ( k  e.  A ,  B ,  0 ) ) )  =  ( k  e.  ZZ  |->  (  _I  `  if ( k  e.  A ,  C ,  0 ) ) ) )
1514adantr 453 . . . . . . . . . . 11  |-  ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  x  e.  ( ZZ>= `  m )
)  ->  ( k  e.  ZZ  |->  (  _I  `  if ( k  e.  A ,  B ,  0 ) ) )  =  ( k  e.  ZZ  |->  (  _I  `  if ( k  e.  A ,  C ,  0 ) ) ) )
1615fveq1d 5732 . . . . . . . . . 10  |-  ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  x  e.  ( ZZ>= `  m )
)  ->  ( (
k  e.  ZZ  |->  (  _I  `  if ( k  e.  A ,  B ,  0 ) ) ) `  x
)  =  ( ( k  e.  ZZ  |->  (  _I  `  if ( k  e.  A ,  C ,  0 ) ) ) `  x
) )
17 eqid 2438 . . . . . . . . . . 11  |-  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) )  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) )
18 eqid 2438 . . . . . . . . . . 11  |-  ( k  e.  ZZ  |->  (  _I 
`  if ( k  e.  A ,  B ,  0 ) ) )  =  ( k  e.  ZZ  |->  (  _I 
`  if ( k  e.  A ,  B ,  0 ) ) )
1917, 18fvmptex 5817 . . . . . . . . . 10  |-  ( ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) `  x )  =  ( ( k  e.  ZZ  |->  (  _I 
`  if ( k  e.  A ,  B ,  0 ) ) ) `  x )
20 eqid 2438 . . . . . . . . . . 11  |-  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  0 ) )  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  0 ) )
21 eqid 2438 . . . . . . . . . . 11  |-  ( k  e.  ZZ  |->  (  _I 
`  if ( k  e.  A ,  C ,  0 ) ) )  =  ( k  e.  ZZ  |->  (  _I 
`  if ( k  e.  A ,  C ,  0 ) ) )
2220, 21fvmptex 5817 . . . . . . . . . 10  |-  ( ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  0 ) ) `  x )  =  ( ( k  e.  ZZ  |->  (  _I 
`  if ( k  e.  A ,  C ,  0 ) ) ) `  x )
2316, 19, 223eqtr4g 2495 . . . . . . . . 9  |-  ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  x  e.  ( ZZ>= `  m )
)  ->  ( (
k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) `  x )  =  ( ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  0 ) ) `  x ) )
2423adantlr 697 . . . . . . . 8  |-  ( ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  m  e.  ZZ )  /\  x  e.  (
ZZ>= `  m ) )  ->  ( ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) `  x )  =  ( ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  0 ) ) `  x ) )
251, 24seqfeq 11350 . . . . . . 7  |-  ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  m  e.  ZZ )  ->  seq  m (  +  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  =  seq  m (  +  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  0 ) ) ) )
2625breq1d 4224 . . . . . 6  |-  ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  m  e.  ZZ )  ->  (  seq  m (  +  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  x  <->  seq  m (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  0 ) ) )  ~~>  x ) )
2726anbi2d 686 . . . . 5  |-  ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  m  e.  ZZ )  ->  (
( A  C_  ( ZZ>=
`  m )  /\  seq  m (  +  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  x )  <-> 
( A  C_  ( ZZ>=
`  m )  /\  seq  m (  +  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  0 ) ) )  ~~>  x ) ) )
2827rexbidva 2724 . . . 4  |-  ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C
)  ->  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  seq  m (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  x )  <->  E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq  m (  +  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  0 ) ) )  ~~>  x ) ) )
29 simplr 733 . . . . . . . . . 10  |-  ( ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  m  e.  NN )
30 nnuz 10523 . . . . . . . . . 10  |-  NN  =  ( ZZ>= `  1 )
3129, 30syl6eleq 2528 . . . . . . . . 9  |-  ( ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  m  e.  ( ZZ>= `  1 )
)
32 f1of 5676 . . . . . . . . . . . . . 14  |-  ( f : ( 1 ... m ) -1-1-onto-> A  ->  f :
( 1 ... m
) --> A )
3332ad2antlr 709 . . . . . . . . . . . . 13  |-  ( ( ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  x  e.  ( 1 ... m
) )  ->  f : ( 1 ... m ) --> A )
34 ffvelrn 5870 . . . . . . . . . . . . 13  |-  ( ( f : ( 1 ... m ) --> A  /\  x  e.  ( 1 ... m ) )  ->  ( f `  x )  e.  A
)
3533, 34sylancom 650 . . . . . . . . . . . 12  |-  ( ( ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  x  e.  ( 1 ... m
) )  ->  (
f `  x )  e.  A )
36 simplll 736 . . . . . . . . . . . 12  |-  ( ( ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  x  e.  ( 1 ... m
) )  ->  A. k  e.  A  (  _I  `  B )  =  (  _I  `  C ) )
37 nfcsb1v 3285 . . . . . . . . . . . . . 14  |-  F/_ k [_ ( f `  x
)  /  k ]_ (  _I  `  B )
38 nfcsb1v 3285 . . . . . . . . . . . . . 14  |-  F/_ k [_ ( f `  x
)  /  k ]_ (  _I  `  C )
3937, 38nfeq 2581 . . . . . . . . . . . . 13  |-  F/ k
[_ ( f `  x )  /  k ]_ (  _I  `  B
)  =  [_ (
f `  x )  /  k ]_ (  _I  `  C )
40 csbeq1a 3261 . . . . . . . . . . . . . 14  |-  ( k  =  ( f `  x )  ->  (  _I  `  B )  = 
[_ ( f `  x )  /  k ]_ (  _I  `  B
) )
41 csbeq1a 3261 . . . . . . . . . . . . . 14  |-  ( k  =  ( f `  x )  ->  (  _I  `  C )  = 
[_ ( f `  x )  /  k ]_ (  _I  `  C
) )
4240, 41eqeq12d 2452 . . . . . . . . . . . . 13  |-  ( k  =  ( f `  x )  ->  (
(  _I  `  B
)  =  (  _I 
`  C )  <->  [_ ( f `
 x )  / 
k ]_ (  _I  `  B )  =  [_ ( f `  x
)  /  k ]_ (  _I  `  C ) ) )
4339, 42rspc 3048 . . . . . . . . . . . 12  |-  ( ( f `  x )  e.  A  ->  ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  ->  [_ (
f `  x )  /  k ]_ (  _I  `  B )  = 
[_ ( f `  x )  /  k ]_ (  _I  `  C
) ) )
4435, 36, 43sylc 59 . . . . . . . . . . 11  |-  ( ( ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  x  e.  ( 1 ... m
) )  ->  [_ (
f `  x )  /  k ]_ (  _I  `  B )  = 
[_ ( f `  x )  /  k ]_ (  _I  `  C
) )
45 fvex 5744 . . . . . . . . . . . 12  |-  ( f `
 x )  e. 
_V
46 csbfv2g 5742 . . . . . . . . . . . 12  |-  ( ( f `  x )  e.  _V  ->  [_ (
f `  x )  /  k ]_ (  _I  `  B )  =  (  _I  `  [_ (
f `  x )  /  k ]_ B
) )
4745, 46ax-mp 8 . . . . . . . . . . 11  |-  [_ (
f `  x )  /  k ]_ (  _I  `  B )  =  (  _I  `  [_ (
f `  x )  /  k ]_ B
)
48 csbfv2g 5742 . . . . . . . . . . . 12  |-  ( ( f `  x )  e.  _V  ->  [_ (
f `  x )  /  k ]_ (  _I  `  C )  =  (  _I  `  [_ (
f `  x )  /  k ]_ C
) )
4945, 48ax-mp 8 . . . . . . . . . . 11  |-  [_ (
f `  x )  /  k ]_ (  _I  `  C )  =  (  _I  `  [_ (
f `  x )  /  k ]_ C
)
5044, 47, 493eqtr3g 2493 . . . . . . . . . 10  |-  ( ( ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  x  e.  ( 1 ... m
) )  ->  (  _I  `  [_ ( f `
 x )  / 
k ]_ B )  =  (  _I  `  [_ (
f `  x )  /  k ]_ C
) )
51 elfznn 11082 . . . . . . . . . . . 12  |-  ( x  e.  ( 1 ... m )  ->  x  e.  NN )
5251adantl 454 . . . . . . . . . . 11  |-  ( ( ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  x  e.  ( 1 ... m
) )  ->  x  e.  NN )
53 fveq2 5730 . . . . . . . . . . . . 13  |-  ( n  =  x  ->  (
f `  n )  =  ( f `  x ) )
5453csbeq1d 3259 . . . . . . . . . . . 12  |-  ( n  =  x  ->  [_ (
f `  n )  /  k ]_ B  =  [_ ( f `  x )  /  k ]_ B )
55 eqid 2438 . . . . . . . . . . . 12  |-  ( n  e.  NN  |->  [_ (
f `  n )  /  k ]_ B
)  =  ( n  e.  NN  |->  [_ (
f `  n )  /  k ]_ B
)
5654, 55fvmpti 5807 . . . . . . . . . . 11  |-  ( x  e.  NN  ->  (
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) `  x
)  =  (  _I 
`  [_ ( f `  x )  /  k ]_ B ) )
5752, 56syl 16 . . . . . . . . . 10  |-  ( ( ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  x  e.  ( 1 ... m
) )  ->  (
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) `  x
)  =  (  _I 
`  [_ ( f `  x )  /  k ]_ B ) )
5853csbeq1d 3259 . . . . . . . . . . . 12  |-  ( n  =  x  ->  [_ (
f `  n )  /  k ]_ C  =  [_ ( f `  x )  /  k ]_ C )
59 eqid 2438 . . . . . . . . . . . 12  |-  ( n  e.  NN  |->  [_ (
f `  n )  /  k ]_ C
)  =  ( n  e.  NN  |->  [_ (
f `  n )  /  k ]_ C
)
6058, 59fvmpti 5807 . . . . . . . . . . 11  |-  ( x  e.  NN  ->  (
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ C ) `  x
)  =  (  _I 
`  [_ ( f `  x )  /  k ]_ C ) )
6152, 60syl 16 . . . . . . . . . 10  |-  ( ( ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  x  e.  ( 1 ... m
) )  ->  (
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ C ) `  x
)  =  (  _I 
`  [_ ( f `  x )  /  k ]_ C ) )
6250, 57, 613eqtr4d 2480 . . . . . . . . 9  |-  ( ( ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  x  e.  ( 1 ... m
) )  ->  (
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) `  x
)  =  ( ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ C ) `  x
) )
6331, 62seqfveq 11349 . . . . . . . 8  |-  ( ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  (  seq  1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m )  =  (  seq  1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ C ) ) `  m ) )
6463eqeq2d 2449 . . . . . . 7  |-  ( ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  ( x  =  (  seq  1
(  +  ,  ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m )  <->  x  =  (  seq  1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ C ) ) `  m ) ) )
6564pm5.32da 624 . . . . . 6  |-  ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  m  e.  NN )  ->  (
( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ) `  m ) )  <->  ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  +  ,  ( n  e.  NN  |->  [_ (
f `  n )  /  k ]_ C
) ) `  m
) ) ) )
6665exbidv 1637 . . . . 5  |-  ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  m  e.  NN )  ->  ( E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq  1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ) `  m ) )  <->  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ C ) ) `  m ) ) ) )
6766rexbidva 2724 . . . 4  |-  ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C
)  ->  ( E. m  e.  NN  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ) `  m ) )  <->  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ C ) ) `  m ) ) ) )
6828, 67orbi12d 692 . . 3  |-  ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C
)  ->  ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq  m (  +  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) )  <-> 
( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq  m (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  0 ) ) )  ~~>  x )  \/ 
E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq  1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ C ) ) `  m ) ) ) ) )
6968iotabidv 5441 . 2  |-  ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C
)  ->  ( iota x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq  m (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  x )  \/ 
E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq  1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ) `  m ) ) ) )  =  ( iota
x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq  m (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  0 ) ) )  ~~>  x )  \/ 
E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq  1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ C ) ) `  m ) ) ) ) )
70 df-sum 12482 . 2  |-  sum_ k  e.  A  B  =  ( iota x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  seq  m (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) ) )
71 df-sum 12482 . 2  |-  sum_ k  e.  A  C  =  ( iota x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  seq  m (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ C ) ) `  m ) ) ) )
7269, 70, 713eqtr4g 2495 1  |-  ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C
)  ->  sum_ k  e.  A  B  =  sum_ k  e.  A  C
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 359    /\ wa 360   E.wex 1551    = wceq 1653    e. wcel 1726   A.wral 2707   E.wrex 2708   _Vcvv 2958   [_csb 3253    C_ wss 3322   ifcif 3741   class class class wbr 4214    e. cmpt 4268    _I cid 4495   iotacio 5418   -->wf 5452   -1-1-onto->wf1o 5455   ` cfv 5456  (class class class)co 6083   0cc0 8992   1c1 8993    + caddc 8995   NNcn 10002   ZZcz 10284   ZZ>=cuz 10490   ...cfz 11045    seq cseq 11325    ~~> cli 12280   sum_csu 12481
This theorem is referenced by:  sumeq2  12490  sum2id  12504
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703  ax-cnex 9048  ax-resscn 9049  ax-1cn 9050  ax-icn 9051  ax-addcl 9052  ax-addrcl 9053  ax-mulcl 9054  ax-mulrcl 9055  ax-mulcom 9056  ax-addass 9057  ax-mulass 9058  ax-distr 9059  ax-i2m1 9060  ax-1ne0 9061  ax-1rid 9062  ax-rnegex 9063  ax-rrecex 9064  ax-cnre 9065  ax-pre-lttri 9066  ax-pre-lttrn 9067  ax-pre-ltadd 9068  ax-pre-mulgt0 9069
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-1st 6351  df-2nd 6352  df-riota 6551  df-recs 6635  df-rdg 6670  df-er 6907  df-en 7112  df-dom 7113  df-sdom 7114  df-pnf 9124  df-mnf 9125  df-xr 9126  df-ltxr 9127  df-le 9128  df-sub 9295  df-neg 9296  df-nn 10003  df-n0 10224  df-z 10285  df-uz 10491  df-fz 11046  df-seq 11326  df-sum 12482
  Copyright terms: Public domain W3C validator