MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sumeq2ii Unicode version

Theorem sumeq2ii 12166
Description: Equality theorem for sum, with the class expressions  B and  C guarded by  _I to be always sets. (Contributed by Mario Carneiro, 29-Mar-2014.)
Assertion
Ref Expression
sumeq2ii  |-  ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C
)  ->  sum_ k  e.  A  B  =  sum_ k  e.  A  C
)
Distinct variable group:    A, k
Allowed substitution hints:    B( k)    C( k)

Proof of Theorem sumeq2ii
Dummy variables  f  m  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 447 . . . . . . . 8  |-  ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  m  e.  ZZ )  ->  m  e.  ZZ )
2 nfra1 2593 . . . . . . . . . . . . 13  |-  F/ k A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )
3 rsp 2603 . . . . . . . . . . . . . . . . 17  |-  ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C
)  ->  ( k  e.  A  ->  (  _I 
`  B )  =  (  _I  `  C
) ) )
43adantr 451 . . . . . . . . . . . . . . . 16  |-  ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  k  e.  ZZ )  ->  (
k  e.  A  -> 
(  _I  `  B
)  =  (  _I 
`  C ) ) )
5 ifeq1 3569 . . . . . . . . . . . . . . . 16  |-  ( (  _I  `  B )  =  (  _I  `  C )  ->  if ( k  e.  A ,  (  _I  `  B
) ,  (  _I 
`  0 ) )  =  if ( k  e.  A ,  (  _I  `  C ) ,  (  _I  ` 
0 ) ) )
64, 5syl6 29 . . . . . . . . . . . . . . 15  |-  ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  k  e.  ZZ )  ->  (
k  e.  A  ->  if ( k  e.  A ,  (  _I  `  B
) ,  (  _I 
`  0 ) )  =  if ( k  e.  A ,  (  _I  `  C ) ,  (  _I  ` 
0 ) ) ) )
7 iffalse 3572 . . . . . . . . . . . . . . . 16  |-  ( -.  k  e.  A  ->  if ( k  e.  A ,  (  _I  `  B
) ,  (  _I 
`  0 ) )  =  (  _I  ` 
0 ) )
8 iffalse 3572 . . . . . . . . . . . . . . . 16  |-  ( -.  k  e.  A  ->  if ( k  e.  A ,  (  _I  `  C
) ,  (  _I 
`  0 ) )  =  (  _I  ` 
0 ) )
97, 8eqtr4d 2318 . . . . . . . . . . . . . . 15  |-  ( -.  k  e.  A  ->  if ( k  e.  A ,  (  _I  `  B
) ,  (  _I 
`  0 ) )  =  if ( k  e.  A ,  (  _I  `  C ) ,  (  _I  ` 
0 ) ) )
106, 9pm2.61d1 151 . . . . . . . . . . . . . 14  |-  ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  k  e.  ZZ )  ->  if ( k  e.  A ,  (  _I  `  B
) ,  (  _I 
`  0 ) )  =  if ( k  e.  A ,  (  _I  `  C ) ,  (  _I  ` 
0 ) ) )
11 fvif 5540 . . . . . . . . . . . . . 14  |-  (  _I 
`  if ( k  e.  A ,  B ,  0 ) )  =  if ( k  e.  A ,  (  _I  `  B ) ,  (  _I  ` 
0 ) )
12 fvif 5540 . . . . . . . . . . . . . 14  |-  (  _I 
`  if ( k  e.  A ,  C ,  0 ) )  =  if ( k  e.  A ,  (  _I  `  C ) ,  (  _I  ` 
0 ) )
1310, 11, 123eqtr4g 2340 . . . . . . . . . . . . 13  |-  ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  k  e.  ZZ )  ->  (  _I  `  if ( k  e.  A ,  B ,  0 ) )  =  (  _I  `  if ( k  e.  A ,  C ,  0 ) ) )
142, 13mpteq2da 4105 . . . . . . . . . . . 12  |-  ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C
)  ->  ( k  e.  ZZ  |->  (  _I  `  if ( k  e.  A ,  B ,  0 ) ) )  =  ( k  e.  ZZ  |->  (  _I  `  if ( k  e.  A ,  C ,  0 ) ) ) )
1514adantr 451 . . . . . . . . . . 11  |-  ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  x  e.  ( ZZ>= `  m )
)  ->  ( k  e.  ZZ  |->  (  _I  `  if ( k  e.  A ,  B ,  0 ) ) )  =  ( k  e.  ZZ  |->  (  _I  `  if ( k  e.  A ,  C ,  0 ) ) ) )
1615fveq1d 5527 . . . . . . . . . 10  |-  ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  x  e.  ( ZZ>= `  m )
)  ->  ( (
k  e.  ZZ  |->  (  _I  `  if ( k  e.  A ,  B ,  0 ) ) ) `  x
)  =  ( ( k  e.  ZZ  |->  (  _I  `  if ( k  e.  A ,  C ,  0 ) ) ) `  x
) )
17 eqid 2283 . . . . . . . . . . 11  |-  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) )  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) )
18 eqid 2283 . . . . . . . . . . 11  |-  ( k  e.  ZZ  |->  (  _I 
`  if ( k  e.  A ,  B ,  0 ) ) )  =  ( k  e.  ZZ  |->  (  _I 
`  if ( k  e.  A ,  B ,  0 ) ) )
1917, 18fvmptex 5610 . . . . . . . . . 10  |-  ( ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) `  x )  =  ( ( k  e.  ZZ  |->  (  _I 
`  if ( k  e.  A ,  B ,  0 ) ) ) `  x )
20 eqid 2283 . . . . . . . . . . 11  |-  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  0 ) )  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  0 ) )
21 eqid 2283 . . . . . . . . . . 11  |-  ( k  e.  ZZ  |->  (  _I 
`  if ( k  e.  A ,  C ,  0 ) ) )  =  ( k  e.  ZZ  |->  (  _I 
`  if ( k  e.  A ,  C ,  0 ) ) )
2220, 21fvmptex 5610 . . . . . . . . . 10  |-  ( ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  0 ) ) `  x )  =  ( ( k  e.  ZZ  |->  (  _I 
`  if ( k  e.  A ,  C ,  0 ) ) ) `  x )
2316, 19, 223eqtr4g 2340 . . . . . . . . 9  |-  ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  x  e.  ( ZZ>= `  m )
)  ->  ( (
k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) `  x )  =  ( ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  0 ) ) `  x ) )
2423adantlr 695 . . . . . . . 8  |-  ( ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  m  e.  ZZ )  /\  x  e.  (
ZZ>= `  m ) )  ->  ( ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) `  x )  =  ( ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  0 ) ) `  x ) )
251, 24seqfeq 11071 . . . . . . 7  |-  ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  m  e.  ZZ )  ->  seq  m (  +  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  =  seq  m (  +  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  0 ) ) ) )
2625breq1d 4033 . . . . . 6  |-  ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  m  e.  ZZ )  ->  (  seq  m (  +  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  x  <->  seq  m (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  0 ) ) )  ~~>  x ) )
2726anbi2d 684 . . . . 5  |-  ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  m  e.  ZZ )  ->  (
( A  C_  ( ZZ>=
`  m )  /\  seq  m (  +  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  x )  <-> 
( A  C_  ( ZZ>=
`  m )  /\  seq  m (  +  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  0 ) ) )  ~~>  x ) ) )
2827rexbidva 2560 . . . 4  |-  ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C
)  ->  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  seq  m (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  x )  <->  E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq  m (  +  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  0 ) ) )  ~~>  x ) ) )
29 simplr 731 . . . . . . . . . 10  |-  ( ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  m  e.  NN )
30 nnuz 10263 . . . . . . . . . 10  |-  NN  =  ( ZZ>= `  1 )
3129, 30syl6eleq 2373 . . . . . . . . 9  |-  ( ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  m  e.  ( ZZ>= `  1 )
)
32 f1of 5472 . . . . . . . . . . . . . 14  |-  ( f : ( 1 ... m ) -1-1-onto-> A  ->  f :
( 1 ... m
) --> A )
3332ad2antlr 707 . . . . . . . . . . . . 13  |-  ( ( ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  x  e.  ( 1 ... m
) )  ->  f : ( 1 ... m ) --> A )
34 ffvelrn 5663 . . . . . . . . . . . . 13  |-  ( ( f : ( 1 ... m ) --> A  /\  x  e.  ( 1 ... m ) )  ->  ( f `  x )  e.  A
)
3533, 34sylancom 648 . . . . . . . . . . . 12  |-  ( ( ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  x  e.  ( 1 ... m
) )  ->  (
f `  x )  e.  A )
36 simplll 734 . . . . . . . . . . . 12  |-  ( ( ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  x  e.  ( 1 ... m
) )  ->  A. k  e.  A  (  _I  `  B )  =  (  _I  `  C ) )
37 nfcsb1v 3113 . . . . . . . . . . . . . 14  |-  F/_ k [_ ( f `  x
)  /  k ]_ (  _I  `  B )
38 nfcsb1v 3113 . . . . . . . . . . . . . 14  |-  F/_ k [_ ( f `  x
)  /  k ]_ (  _I  `  C )
3937, 38nfeq 2426 . . . . . . . . . . . . 13  |-  F/ k
[_ ( f `  x )  /  k ]_ (  _I  `  B
)  =  [_ (
f `  x )  /  k ]_ (  _I  `  C )
40 csbeq1a 3089 . . . . . . . . . . . . . 14  |-  ( k  =  ( f `  x )  ->  (  _I  `  B )  = 
[_ ( f `  x )  /  k ]_ (  _I  `  B
) )
41 csbeq1a 3089 . . . . . . . . . . . . . 14  |-  ( k  =  ( f `  x )  ->  (  _I  `  C )  = 
[_ ( f `  x )  /  k ]_ (  _I  `  C
) )
4240, 41eqeq12d 2297 . . . . . . . . . . . . 13  |-  ( k  =  ( f `  x )  ->  (
(  _I  `  B
)  =  (  _I 
`  C )  <->  [_ ( f `
 x )  / 
k ]_ (  _I  `  B )  =  [_ ( f `  x
)  /  k ]_ (  _I  `  C ) ) )
4339, 42rspc 2878 . . . . . . . . . . . 12  |-  ( ( f `  x )  e.  A  ->  ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  ->  [_ (
f `  x )  /  k ]_ (  _I  `  B )  = 
[_ ( f `  x )  /  k ]_ (  _I  `  C
) ) )
4435, 36, 43sylc 56 . . . . . . . . . . 11  |-  ( ( ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  x  e.  ( 1 ... m
) )  ->  [_ (
f `  x )  /  k ]_ (  _I  `  B )  = 
[_ ( f `  x )  /  k ]_ (  _I  `  C
) )
45 fvex 5539 . . . . . . . . . . . 12  |-  ( f `
 x )  e. 
_V
46 csbfv2g 5537 . . . . . . . . . . . 12  |-  ( ( f `  x )  e.  _V  ->  [_ (
f `  x )  /  k ]_ (  _I  `  B )  =  (  _I  `  [_ (
f `  x )  /  k ]_ B
) )
4745, 46ax-mp 8 . . . . . . . . . . 11  |-  [_ (
f `  x )  /  k ]_ (  _I  `  B )  =  (  _I  `  [_ (
f `  x )  /  k ]_ B
)
48 csbfv2g 5537 . . . . . . . . . . . 12  |-  ( ( f `  x )  e.  _V  ->  [_ (
f `  x )  /  k ]_ (  _I  `  C )  =  (  _I  `  [_ (
f `  x )  /  k ]_ C
) )
4945, 48ax-mp 8 . . . . . . . . . . 11  |-  [_ (
f `  x )  /  k ]_ (  _I  `  C )  =  (  _I  `  [_ (
f `  x )  /  k ]_ C
)
5044, 47, 493eqtr3g 2338 . . . . . . . . . 10  |-  ( ( ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  x  e.  ( 1 ... m
) )  ->  (  _I  `  [_ ( f `
 x )  / 
k ]_ B )  =  (  _I  `  [_ (
f `  x )  /  k ]_ C
) )
51 elfznn 10819 . . . . . . . . . . . 12  |-  ( x  e.  ( 1 ... m )  ->  x  e.  NN )
5251adantl 452 . . . . . . . . . . 11  |-  ( ( ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  x  e.  ( 1 ... m
) )  ->  x  e.  NN )
53 fveq2 5525 . . . . . . . . . . . . 13  |-  ( n  =  x  ->  (
f `  n )  =  ( f `  x ) )
5453csbeq1d 3087 . . . . . . . . . . . 12  |-  ( n  =  x  ->  [_ (
f `  n )  /  k ]_ B  =  [_ ( f `  x )  /  k ]_ B )
55 eqid 2283 . . . . . . . . . . . 12  |-  ( n  e.  NN  |->  [_ (
f `  n )  /  k ]_ B
)  =  ( n  e.  NN  |->  [_ (
f `  n )  /  k ]_ B
)
5654, 55fvmpti 5601 . . . . . . . . . . 11  |-  ( x  e.  NN  ->  (
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) `  x
)  =  (  _I 
`  [_ ( f `  x )  /  k ]_ B ) )
5752, 56syl 15 . . . . . . . . . 10  |-  ( ( ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  x  e.  ( 1 ... m
) )  ->  (
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) `  x
)  =  (  _I 
`  [_ ( f `  x )  /  k ]_ B ) )
5853csbeq1d 3087 . . . . . . . . . . . 12  |-  ( n  =  x  ->  [_ (
f `  n )  /  k ]_ C  =  [_ ( f `  x )  /  k ]_ C )
59 eqid 2283 . . . . . . . . . . . 12  |-  ( n  e.  NN  |->  [_ (
f `  n )  /  k ]_ C
)  =  ( n  e.  NN  |->  [_ (
f `  n )  /  k ]_ C
)
6058, 59fvmpti 5601 . . . . . . . . . . 11  |-  ( x  e.  NN  ->  (
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ C ) `  x
)  =  (  _I 
`  [_ ( f `  x )  /  k ]_ C ) )
6152, 60syl 15 . . . . . . . . . 10  |-  ( ( ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  x  e.  ( 1 ... m
) )  ->  (
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ C ) `  x
)  =  (  _I 
`  [_ ( f `  x )  /  k ]_ C ) )
6250, 57, 613eqtr4d 2325 . . . . . . . . 9  |-  ( ( ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  /\  x  e.  ( 1 ... m
) )  ->  (
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) `  x
)  =  ( ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ C ) `  x
) )
6331, 62seqfveq 11070 . . . . . . . 8  |-  ( ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  (  seq  1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m )  =  (  seq  1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ C ) ) `  m ) )
6463eqeq2d 2294 . . . . . . 7  |-  ( ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  m  e.  NN )  /\  f : ( 1 ... m ) -1-1-onto-> A )  ->  ( x  =  (  seq  1
(  +  ,  ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m )  <->  x  =  (  seq  1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ C ) ) `  m ) ) )
6564pm5.32da 622 . . . . . 6  |-  ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  m  e.  NN )  ->  (
( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ) `  m ) )  <->  ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  +  ,  ( n  e.  NN  |->  [_ (
f `  n )  /  k ]_ C
) ) `  m
) ) ) )
6665exbidv 1612 . . . . 5  |-  ( ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C )  /\  m  e.  NN )  ->  ( E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq  1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ) `  m ) )  <->  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ C ) ) `  m ) ) ) )
6766rexbidva 2560 . . . 4  |-  ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C
)  ->  ( E. m  e.  NN  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ) `  m ) )  <->  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ C ) ) `  m ) ) ) )
6828, 67orbi12d 690 . . 3  |-  ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C
)  ->  ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq  m (  +  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) )  <-> 
( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq  m (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  0 ) ) )  ~~>  x )  \/ 
E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq  1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ C ) ) `  m ) ) ) ) )
6968iotabidv 5240 . 2  |-  ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C
)  ->  ( iota x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq  m (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  x )  \/ 
E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq  1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ) `  m ) ) ) )  =  ( iota
x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq  m (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  0 ) ) )  ~~>  x )  \/ 
E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq  1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ C ) ) `  m ) ) ) ) )
70 df-sum 12159 . 2  |-  sum_ k  e.  A  B  =  ( iota x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  seq  m (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) ) )
71 df-sum 12159 . 2  |-  sum_ k  e.  A  C  =  ( iota x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  seq  m (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  C ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ C ) ) `  m ) ) ) )
7269, 70, 713eqtr4g 2340 1  |-  ( A. k  e.  A  (  _I  `  B )  =  (  _I  `  C
)  ->  sum_ k  e.  A  B  =  sum_ k  e.  A  C
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 357    /\ wa 358   E.wex 1528    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544   _Vcvv 2788   [_csb 3081    C_ wss 3152   ifcif 3565   class class class wbr 4023    e. cmpt 4077    _I cid 4304   iotacio 5217   -->wf 5251   -1-1-onto->wf1o 5254   ` cfv 5255  (class class class)co 5858   0cc0 8737   1c1 8738    + caddc 8740   NNcn 9746   ZZcz 10024   ZZ>=cuz 10230   ...cfz 10782    seq cseq 11046    ~~> cli 11958   sum_csu 12158
This theorem is referenced by:  sumeq2  12167  sum2id  12181
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-n0 9966  df-z 10025  df-uz 10231  df-fz 10783  df-seq 11047  df-sum 12159
  Copyright terms: Public domain W3C validator