MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sumfc Unicode version

Theorem sumfc 12486
Description: A lemma to facilitate conversions from the function form to the class-variable form of a sum. (Contributed by Mario Carneiro, 12-Aug-2013.) (Revised by Mario Carneiro, 23-Apr-2014.)
Assertion
Ref Expression
sumfc  |-  sum_ j  e.  A  ( (
k  e.  A  |->  B ) `  j )  =  sum_ k  e.  A  B
Distinct variable groups:    j, k, A    B, j
Allowed substitution hint:    B( k)

Proof of Theorem sumfc
StepHypRef Expression
1 eqid 2430 . . . 4  |-  ( k  e.  A  |->  B )  =  ( k  e.  A  |->  B )
21fvmpt2i 5797 . . 3  |-  ( k  e.  A  ->  (
( k  e.  A  |->  B ) `  k
)  =  (  _I 
`  B ) )
32sumeq2i 12476 . 2  |-  sum_ k  e.  A  ( (
k  e.  A  |->  B ) `  k )  =  sum_ k  e.  A  (  _I  `  B )
4 nffvmpt1 5722 . . 3  |-  F/_ k
( ( k  e.  A  |->  B ) `  j )
5 nfcv 2566 . . 3  |-  F/_ j
( ( k  e.  A  |->  B ) `  k )
6 fveq2 5714 . . 3  |-  ( j  =  k  ->  (
( k  e.  A  |->  B ) `  j
)  =  ( ( k  e.  A  |->  B ) `  k ) )
74, 5, 6cbvsumi 12474 . 2  |-  sum_ j  e.  A  ( (
k  e.  A  |->  B ) `  j )  =  sum_ k  e.  A  ( ( k  e.  A  |->  B ) `  k )
8 sum2id 12485 . 2  |-  sum_ k  e.  A  B  =  sum_ k  e.  A  (  _I  `  B )
93, 7, 83eqtr4i 2460 1  |-  sum_ j  e.  A  ( (
k  e.  A  |->  B ) `  j )  =  sum_ k  e.  A  B
Colors of variables: wff set class
Syntax hints:    = wceq 1652    e. cmpt 4253    _I cid 4480   ` cfv 5440   sum_csu 12462
This theorem is referenced by:  fsumf1o  12500  sumss  12501  fsumss  12502  fsumcl2lem  12508  fsumadd  12515  isumclim3  12526  isummulc2  12529  fsummulc2  12550  fsumrelem  12569  isumshft  12602  gsumfsum  16749  fprodefsum  25282
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2411  ax-sep 4317  ax-nul 4325  ax-pow 4364  ax-pr 4390  ax-un 4687  ax-cnex 9030  ax-resscn 9031  ax-1cn 9032  ax-icn 9033  ax-addcl 9034  ax-addrcl 9035  ax-mulcl 9036  ax-mulrcl 9037  ax-mulcom 9038  ax-addass 9039  ax-mulass 9040  ax-distr 9041  ax-i2m1 9042  ax-1ne0 9043  ax-1rid 9044  ax-rnegex 9045  ax-rrecex 9046  ax-cnre 9047  ax-pre-lttri 9048  ax-pre-lttrn 9049  ax-pre-ltadd 9050  ax-pre-mulgt0 9051
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2417  df-cleq 2423  df-clel 2426  df-nfc 2555  df-ne 2595  df-nel 2596  df-ral 2697  df-rex 2698  df-reu 2699  df-rab 2701  df-v 2945  df-sbc 3149  df-csb 3239  df-dif 3310  df-un 3312  df-in 3314  df-ss 3321  df-pss 3323  df-nul 3616  df-if 3727  df-pw 3788  df-sn 3807  df-pr 3808  df-tp 3809  df-op 3810  df-uni 4003  df-iun 4082  df-br 4200  df-opab 4254  df-mpt 4255  df-tr 4290  df-eprel 4481  df-id 4485  df-po 4490  df-so 4491  df-fr 4528  df-we 4530  df-ord 4571  df-on 4572  df-lim 4573  df-suc 4574  df-om 4832  df-xp 4870  df-rel 4871  df-cnv 4872  df-co 4873  df-dm 4874  df-rn 4875  df-res 4876  df-ima 4877  df-iota 5404  df-fun 5442  df-fn 5443  df-f 5444  df-f1 5445  df-fo 5446  df-f1o 5447  df-fv 5448  df-ov 6070  df-oprab 6071  df-mpt2 6072  df-1st 6335  df-2nd 6336  df-riota 6535  df-recs 6619  df-rdg 6654  df-er 6891  df-en 7096  df-dom 7097  df-sdom 7098  df-pnf 9106  df-mnf 9107  df-xr 9108  df-ltxr 9109  df-le 9110  df-sub 9277  df-neg 9278  df-nn 9985  df-n0 10206  df-z 10267  df-uz 10473  df-fz 11028  df-seq 11307  df-sum 12463
  Copyright terms: Public domain W3C validator