MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  summolem2a Structured version   Unicode version

Theorem summolem2a 12509
Description: Lemma for summo 12511. (Contributed by Mario Carneiro, 3-Apr-2014.) (Revised by Mario Carneiro, 20-Apr-2014.)
Hypotheses
Ref Expression
summo.1  |-  F  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) )
summo.2  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
summo.3  |-  G  =  ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B )
summolem2.4  |-  H  =  ( n  e.  NN  |->  [_ ( K `  n
)  /  k ]_ B )
summolem2.5  |-  ( ph  ->  N  e.  NN )
summolem2.6  |-  ( ph  ->  M  e.  ZZ )
summolem2.7  |-  ( ph  ->  A  C_  ( ZZ>= `  M ) )
summolem2.8  |-  ( ph  ->  f : ( 1 ... N ) -1-1-onto-> A )
summolem2.9  |-  ( ph  ->  K  Isom  <  ,  <  ( ( 1 ... ( # `
 A ) ) ,  A ) )
Assertion
Ref Expression
summolem2a  |-  ( ph  ->  seq  M (  +  ,  F )  ~~>  (  seq  1 (  +  ,  G ) `  N
) )
Distinct variable groups:    f, k, n, A    f, F, k, n    k, G, n   
k, K, n    k, N, n    ph, k, n    B, f, n    k, M, n
Allowed substitution hints:    ph( f)    B( k)    G( f)    H( f, k, n)    K( f)    M( f)    N( f)

Proof of Theorem summolem2a
Dummy variables  m  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 summo.1 . . 3  |-  F  =  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) )
2 summo.2 . . 3  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
3 summolem2.7 . . . 4  |-  ( ph  ->  A  C_  ( ZZ>= `  M ) )
4 summolem2.9 . . . . . . . 8  |-  ( ph  ->  K  Isom  <  ,  <  ( ( 1 ... ( # `
 A ) ) ,  A ) )
5 summolem2.8 . . . . . . . . . . . . 13  |-  ( ph  ->  f : ( 1 ... N ) -1-1-onto-> A )
6 ovex 6106 . . . . . . . . . . . . . 14  |-  ( 1 ... N )  e. 
_V
76f1oen 7128 . . . . . . . . . . . . 13  |-  ( f : ( 1 ... N ) -1-1-onto-> A  ->  ( 1 ... N )  ~~  A )
85, 7syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  ( 1 ... N
)  ~~  A )
9 fzfid 11312 . . . . . . . . . . . . 13  |-  ( ph  ->  ( 1 ... N
)  e.  Fin )
108ensymd 7158 . . . . . . . . . . . . . 14  |-  ( ph  ->  A  ~~  ( 1 ... N ) )
11 enfii 7326 . . . . . . . . . . . . . 14  |-  ( ( ( 1 ... N
)  e.  Fin  /\  A  ~~  ( 1 ... N ) )  ->  A  e.  Fin )
129, 10, 11syl2anc 643 . . . . . . . . . . . . 13  |-  ( ph  ->  A  e.  Fin )
13 hashen 11631 . . . . . . . . . . . . 13  |-  ( ( ( 1 ... N
)  e.  Fin  /\  A  e.  Fin )  ->  ( ( # `  (
1 ... N ) )  =  ( # `  A
)  <->  ( 1 ... N )  ~~  A
) )
149, 12, 13syl2anc 643 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( # `  (
1 ... N ) )  =  ( # `  A
)  <->  ( 1 ... N )  ~~  A
) )
158, 14mpbird 224 . . . . . . . . . . 11  |-  ( ph  ->  ( # `  (
1 ... N ) )  =  ( # `  A
) )
16 summolem2.5 . . . . . . . . . . . 12  |-  ( ph  ->  N  e.  NN )
17 nnnn0 10228 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  N  e.  NN0 )
18 hashfz1 11630 . . . . . . . . . . . 12  |-  ( N  e.  NN0  ->  ( # `  ( 1 ... N
) )  =  N )
1916, 17, 183syl 19 . . . . . . . . . . 11  |-  ( ph  ->  ( # `  (
1 ... N ) )  =  N )
2015, 19eqtr3d 2470 . . . . . . . . . 10  |-  ( ph  ->  ( # `  A
)  =  N )
2120oveq2d 6097 . . . . . . . . 9  |-  ( ph  ->  ( 1 ... ( # `
 A ) )  =  ( 1 ... N ) )
22 isoeq4 6042 . . . . . . . . 9  |-  ( ( 1 ... ( # `  A ) )  =  ( 1 ... N
)  ->  ( K  Isom  <  ,  <  (
( 1 ... ( # `
 A ) ) ,  A )  <->  K  Isom  <  ,  <  ( ( 1 ... N ) ,  A ) ) )
2321, 22syl 16 . . . . . . . 8  |-  ( ph  ->  ( K  Isom  <  ,  <  ( ( 1 ... ( # `  A
) ) ,  A
)  <->  K  Isom  <  ,  <  ( ( 1 ... N ) ,  A
) ) )
244, 23mpbid 202 . . . . . . 7  |-  ( ph  ->  K  Isom  <  ,  <  ( ( 1 ... N
) ,  A ) )
25 isof1o 6045 . . . . . . 7  |-  ( K 
Isom  <  ,  <  (
( 1 ... N
) ,  A )  ->  K : ( 1 ... N ) -1-1-onto-> A )
2624, 25syl 16 . . . . . 6  |-  ( ph  ->  K : ( 1 ... N ) -1-1-onto-> A )
27 f1of 5674 . . . . . 6  |-  ( K : ( 1 ... N ) -1-1-onto-> A  ->  K :
( 1 ... N
) --> A )
2826, 27syl 16 . . . . 5  |-  ( ph  ->  K : ( 1 ... N ) --> A )
29 nnuz 10521 . . . . . . 7  |-  NN  =  ( ZZ>= `  1 )
3016, 29syl6eleq 2526 . . . . . 6  |-  ( ph  ->  N  e.  ( ZZ>= ` 
1 ) )
31 eluzfz2 11065 . . . . . 6  |-  ( N  e.  ( ZZ>= `  1
)  ->  N  e.  ( 1 ... N
) )
3230, 31syl 16 . . . . 5  |-  ( ph  ->  N  e.  ( 1 ... N ) )
3328, 32ffvelrnd 5871 . . . 4  |-  ( ph  ->  ( K `  N
)  e.  A )
343, 33sseldd 3349 . . 3  |-  ( ph  ->  ( K `  N
)  e.  ( ZZ>= `  M ) )
353sselda 3348 . . . . . 6  |-  ( (
ph  /\  n  e.  A )  ->  n  e.  ( ZZ>= `  M )
)
36 f1ocnvfv2 6015 . . . . . . . . 9  |-  ( ( K : ( 1 ... N ) -1-1-onto-> A  /\  n  e.  A )  ->  ( K `  ( `' K `  n ) )  =  n )
3726, 36sylan 458 . . . . . . . 8  |-  ( (
ph  /\  n  e.  A )  ->  ( K `  ( `' K `  n )
)  =  n )
38 f1ocnv 5687 . . . . . . . . . . . 12  |-  ( K : ( 1 ... N ) -1-1-onto-> A  ->  `' K : A -1-1-onto-> ( 1 ... N
) )
39 f1of 5674 . . . . . . . . . . . 12  |-  ( `' K : A -1-1-onto-> ( 1 ... N )  ->  `' K : A --> ( 1 ... N ) )
4026, 38, 393syl 19 . . . . . . . . . . 11  |-  ( ph  ->  `' K : A --> ( 1 ... N ) )
4140ffvelrnda 5870 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  A )  ->  ( `' K `  n )  e.  ( 1 ... N ) )
42 elfzle2 11061 . . . . . . . . . 10  |-  ( ( `' K `  n )  e.  ( 1 ... N )  ->  ( `' K `  n )  <_  N )
4341, 42syl 16 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  A )  ->  ( `' K `  n )  <_  N )
4424adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  A )  ->  K  Isom  <  ,  <  (
( 1 ... N
) ,  A ) )
45 fzssuz 11093 . . . . . . . . . . . . 13  |-  ( 1 ... N )  C_  ( ZZ>= `  1 )
46 uzssz 10505 . . . . . . . . . . . . . 14  |-  ( ZZ>= ` 
1 )  C_  ZZ
47 zssre 10289 . . . . . . . . . . . . . 14  |-  ZZ  C_  RR
4846, 47sstri 3357 . . . . . . . . . . . . 13  |-  ( ZZ>= ` 
1 )  C_  RR
4945, 48sstri 3357 . . . . . . . . . . . 12  |-  ( 1 ... N )  C_  RR
50 ressxr 9129 . . . . . . . . . . . 12  |-  RR  C_  RR*
5149, 50sstri 3357 . . . . . . . . . . 11  |-  ( 1 ... N )  C_  RR*
5251a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  A )  ->  (
1 ... N )  C_  RR* )
533adantr 452 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  A )  ->  A  C_  ( ZZ>= `  M )
)
54 uzssz 10505 . . . . . . . . . . . . 13  |-  ( ZZ>= `  M )  C_  ZZ
5554, 47sstri 3357 . . . . . . . . . . . 12  |-  ( ZZ>= `  M )  C_  RR
5653, 55syl6ss 3360 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  A )  ->  A  C_  RR )
5756, 50syl6ss 3360 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  A )  ->  A  C_ 
RR* )
5832adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  A )  ->  N  e.  ( 1 ... N
) )
59 leisorel 11709 . . . . . . . . . 10  |-  ( ( K  Isom  <  ,  <  ( ( 1 ... N
) ,  A )  /\  ( ( 1 ... N )  C_  RR* 
/\  A  C_  RR* )  /\  ( ( `' K `  n )  e.  ( 1 ... N )  /\  N  e.  ( 1 ... N ) ) )  ->  (
( `' K `  n )  <_  N  <->  ( K `  ( `' K `  n ) )  <_  ( K `  N ) ) )
6044, 52, 57, 41, 58, 59syl122anc 1193 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  A )  ->  (
( `' K `  n )  <_  N  <->  ( K `  ( `' K `  n ) )  <_  ( K `  N ) ) )
6143, 60mpbid 202 . . . . . . . 8  |-  ( (
ph  /\  n  e.  A )  ->  ( K `  ( `' K `  n )
)  <_  ( K `  N ) )
6237, 61eqbrtrrd 4234 . . . . . . 7  |-  ( (
ph  /\  n  e.  A )  ->  n  <_  ( K `  N
) )
63 eluzelz 10496 . . . . . . . . 9  |-  ( n  e.  ( ZZ>= `  M
)  ->  n  e.  ZZ )
6435, 63syl 16 . . . . . . . 8  |-  ( (
ph  /\  n  e.  A )  ->  n  e.  ZZ )
65 eluzelz 10496 . . . . . . . . . 10  |-  ( ( K `  N )  e.  ( ZZ>= `  M
)  ->  ( K `  N )  e.  ZZ )
6634, 65syl 16 . . . . . . . . 9  |-  ( ph  ->  ( K `  N
)  e.  ZZ )
6766adantr 452 . . . . . . . 8  |-  ( (
ph  /\  n  e.  A )  ->  ( K `  N )  e.  ZZ )
68 eluz 10499 . . . . . . . 8  |-  ( ( n  e.  ZZ  /\  ( K `  N )  e.  ZZ )  -> 
( ( K `  N )  e.  (
ZZ>= `  n )  <->  n  <_  ( K `  N ) ) )
6964, 67, 68syl2anc 643 . . . . . . 7  |-  ( (
ph  /\  n  e.  A )  ->  (
( K `  N
)  e.  ( ZZ>= `  n )  <->  n  <_  ( K `  N ) ) )
7062, 69mpbird 224 . . . . . 6  |-  ( (
ph  /\  n  e.  A )  ->  ( K `  N )  e.  ( ZZ>= `  n )
)
71 elfzuzb 11053 . . . . . 6  |-  ( n  e.  ( M ... ( K `  N ) )  <->  ( n  e.  ( ZZ>= `  M )  /\  ( K `  N
)  e.  ( ZZ>= `  n ) ) )
7235, 70, 71sylanbrc 646 . . . . 5  |-  ( (
ph  /\  n  e.  A )  ->  n  e.  ( M ... ( K `  N )
) )
7372ex 424 . . . 4  |-  ( ph  ->  ( n  e.  A  ->  n  e.  ( M ... ( K `  N ) ) ) )
7473ssrdv 3354 . . 3  |-  ( ph  ->  A  C_  ( M ... ( K `  N
) ) )
751, 2, 34, 74fsumcvg 12506 . 2  |-  ( ph  ->  seq  M (  +  ,  F )  ~~>  (  seq 
M (  +  ,  F ) `  ( K `  N )
) )
76 addid2 9249 . . . . 5  |-  ( m  e.  CC  ->  (
0  +  m )  =  m )
7776adantl 453 . . . 4  |-  ( (
ph  /\  m  e.  CC )  ->  ( 0  +  m )  =  m )
78 addid1 9246 . . . . 5  |-  ( m  e.  CC  ->  (
m  +  0 )  =  m )
7978adantl 453 . . . 4  |-  ( (
ph  /\  m  e.  CC )  ->  ( m  +  0 )  =  m )
80 addcl 9072 . . . . 5  |-  ( ( m  e.  CC  /\  x  e.  CC )  ->  ( m  +  x
)  e.  CC )
8180adantl 453 . . . 4  |-  ( (
ph  /\  ( m  e.  CC  /\  x  e.  CC ) )  -> 
( m  +  x
)  e.  CC )
82 0cn 9084 . . . . 5  |-  0  e.  CC
8382a1i 11 . . . 4  |-  ( ph  ->  0  e.  CC )
8432, 21eleqtrrd 2513 . . . 4  |-  ( ph  ->  N  e.  ( 1 ... ( # `  A
) ) )
85 iftrue 3745 . . . . . . . . . . 11  |-  ( k  e.  A  ->  if ( k  e.  A ,  B ,  0 )  =  B )
8685adantl 453 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  A )  ->  if ( k  e.  A ,  B ,  0 )  =  B )
8786, 2eqeltrd 2510 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  A )  ->  if ( k  e.  A ,  B ,  0 )  e.  CC )
8887ex 424 . . . . . . . 8  |-  ( ph  ->  ( k  e.  A  ->  if ( k  e.  A ,  B , 
0 )  e.  CC ) )
89 iffalse 3746 . . . . . . . . 9  |-  ( -.  k  e.  A  ->  if ( k  e.  A ,  B ,  0 )  =  0 )
9089, 82syl6eqel 2524 . . . . . . . 8  |-  ( -.  k  e.  A  ->  if ( k  e.  A ,  B ,  0 )  e.  CC )
9188, 90pm2.61d1 153 . . . . . . 7  |-  ( ph  ->  if ( k  e.  A ,  B , 
0 )  e.  CC )
9291adantr 452 . . . . . 6  |-  ( (
ph  /\  k  e.  ZZ )  ->  if ( k  e.  A ,  B ,  0 )  e.  CC )
9392, 1fmptd 5893 . . . . 5  |-  ( ph  ->  F : ZZ --> CC )
94 elfzelz 11059 . . . . 5  |-  ( m  e.  ( M ... ( K `  ( # `  A ) ) )  ->  m  e.  ZZ )
95 ffvelrn 5868 . . . . 5  |-  ( ( F : ZZ --> CC  /\  m  e.  ZZ )  ->  ( F `  m
)  e.  CC )
9693, 94, 95syl2an 464 . . . 4  |-  ( (
ph  /\  m  e.  ( M ... ( K `
 ( # `  A
) ) ) )  ->  ( F `  m )  e.  CC )
97 fveq2 5728 . . . . . . 7  |-  ( k  =  m  ->  ( F `  k )  =  ( F `  m ) )
9897eqeq1d 2444 . . . . . 6  |-  ( k  =  m  ->  (
( F `  k
)  =  0  <->  ( F `  m )  =  0 ) )
99 eldifi 3469 . . . . . . . . 9  |-  ( k  e.  ( ( M ... ( K `  ( # `  A ) ) )  \  A
)  ->  k  e.  ( M ... ( K `
 ( # `  A
) ) ) )
100 elfzelz 11059 . . . . . . . . 9  |-  ( k  e.  ( M ... ( K `  ( # `  A ) ) )  ->  k  e.  ZZ )
10199, 100syl 16 . . . . . . . 8  |-  ( k  e.  ( ( M ... ( K `  ( # `  A ) ) )  \  A
)  ->  k  e.  ZZ )
102 eldifn 3470 . . . . . . . . . 10  |-  ( k  e.  ( ( M ... ( K `  ( # `  A ) ) )  \  A
)  ->  -.  k  e.  A )
103102, 89syl 16 . . . . . . . . 9  |-  ( k  e.  ( ( M ... ( K `  ( # `  A ) ) )  \  A
)  ->  if (
k  e.  A ,  B ,  0 )  =  0 )
104103, 82syl6eqel 2524 . . . . . . . 8  |-  ( k  e.  ( ( M ... ( K `  ( # `  A ) ) )  \  A
)  ->  if (
k  e.  A ,  B ,  0 )  e.  CC )
1051fvmpt2 5812 . . . . . . . 8  |-  ( ( k  e.  ZZ  /\  if ( k  e.  A ,  B ,  0 )  e.  CC )  -> 
( F `  k
)  =  if ( k  e.  A ,  B ,  0 ) )
106101, 104, 105syl2anc 643 . . . . . . 7  |-  ( k  e.  ( ( M ... ( K `  ( # `  A ) ) )  \  A
)  ->  ( F `  k )  =  if ( k  e.  A ,  B ,  0 ) )
107106, 103eqtrd 2468 . . . . . 6  |-  ( k  e.  ( ( M ... ( K `  ( # `  A ) ) )  \  A
)  ->  ( F `  k )  =  0 )
10898, 107vtoclga 3017 . . . . 5  |-  ( m  e.  ( ( M ... ( K `  ( # `  A ) ) )  \  A
)  ->  ( F `  m )  =  0 )
109108adantl 453 . . . 4  |-  ( (
ph  /\  m  e.  ( ( M ... ( K `  ( # `  A ) ) ) 
\  A ) )  ->  ( F `  m )  =  0 )
110 isof1o 6045 . . . . . . . 8  |-  ( K 
Isom  <  ,  <  (
( 1 ... ( # `
 A ) ) ,  A )  ->  K : ( 1 ... ( # `  A
) ) -1-1-onto-> A )
111 f1of 5674 . . . . . . . 8  |-  ( K : ( 1 ... ( # `  A
) ) -1-1-onto-> A  ->  K :
( 1 ... ( # `
 A ) ) --> A )
1124, 110, 1113syl 19 . . . . . . 7  |-  ( ph  ->  K : ( 1 ... ( # `  A
) ) --> A )
113112ffvelrnda 5870 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 1 ... ( # `
 A ) ) )  ->  ( K `  x )  e.  A
)
114 iftrue 3745 . . . . . 6  |-  ( ( K `  x )  e.  A  ->  if ( ( K `  x )  e.  A ,  [_ ( K `  x )  /  k ]_ B ,  0 )  =  [_ ( K `
 x )  / 
k ]_ B )
115113, 114syl 16 . . . . 5  |-  ( (
ph  /\  x  e.  ( 1 ... ( # `
 A ) ) )  ->  if (
( K `  x
)  e.  A ,  [_ ( K `  x
)  /  k ]_ B ,  0 )  =  [_ ( K `
 x )  / 
k ]_ B )
1163adantr 452 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 ... ( # `
 A ) ) )  ->  A  C_  ( ZZ>=
`  M ) )
117116, 113sseldd 3349 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 ... ( # `
 A ) ) )  ->  ( K `  x )  e.  (
ZZ>= `  M ) )
118 eluzelz 10496 . . . . . . 7  |-  ( ( K `  x )  e.  ( ZZ>= `  M
)  ->  ( K `  x )  e.  ZZ )
119117, 118syl 16 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 1 ... ( # `
 A ) ) )  ->  ( K `  x )  e.  ZZ )
120 nfv 1629 . . . . . . . . 9  |-  F/ k
ph
121 nfv 1629 . . . . . . . . . . 11  |-  F/ k ( K `  x
)  e.  A
122 nfcsb1v 3283 . . . . . . . . . . 11  |-  F/_ k [_ ( K `  x
)  /  k ]_ B
123 nfcv 2572 . . . . . . . . . . 11  |-  F/_ k
0
124121, 122, 123nfif 3763 . . . . . . . . . 10  |-  F/_ k if ( ( K `  x )  e.  A ,  [_ ( K `  x )  /  k ]_ B ,  0 )
125124nfel1 2582 . . . . . . . . 9  |-  F/ k if ( ( K `
 x )  e.  A ,  [_ ( K `  x )  /  k ]_ B ,  0 )  e.  CC
126120, 125nfim 1832 . . . . . . . 8  |-  F/ k ( ph  ->  if ( ( K `  x )  e.  A ,  [_ ( K `  x )  /  k ]_ B ,  0 )  e.  CC )
127 fvex 5742 . . . . . . . 8  |-  ( K `
 x )  e. 
_V
128 eleq1 2496 . . . . . . . . . . 11  |-  ( k  =  ( K `  x )  ->  (
k  e.  A  <->  ( K `  x )  e.  A
) )
129 csbeq1a 3259 . . . . . . . . . . 11  |-  ( k  =  ( K `  x )  ->  B  =  [_ ( K `  x )  /  k ]_ B )
130 eqidd 2437 . . . . . . . . . . 11  |-  ( k  =  ( K `  x )  ->  0  =  0 )
131128, 129, 130ifbieq12d 3761 . . . . . . . . . 10  |-  ( k  =  ( K `  x )  ->  if ( k  e.  A ,  B ,  0 )  =  if ( ( K `  x )  e.  A ,  [_ ( K `  x )  /  k ]_ B ,  0 ) )
132131eleq1d 2502 . . . . . . . . 9  |-  ( k  =  ( K `  x )  ->  ( if ( k  e.  A ,  B ,  0 )  e.  CC  <->  if (
( K `  x
)  e.  A ,  [_ ( K `  x
)  /  k ]_ B ,  0 )  e.  CC ) )
133132imbi2d 308 . . . . . . . 8  |-  ( k  =  ( K `  x )  ->  (
( ph  ->  if ( k  e.  A ,  B ,  0 )  e.  CC )  <->  ( ph  ->  if ( ( K `
 x )  e.  A ,  [_ ( K `  x )  /  k ]_ B ,  0 )  e.  CC ) ) )
134126, 127, 133, 91vtoclf 3005 . . . . . . 7  |-  ( ph  ->  if ( ( K `
 x )  e.  A ,  [_ ( K `  x )  /  k ]_ B ,  0 )  e.  CC )
135134adantr 452 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 1 ... ( # `
 A ) ) )  ->  if (
( K `  x
)  e.  A ,  [_ ( K `  x
)  /  k ]_ B ,  0 )  e.  CC )
136 eleq1 2496 . . . . . . . 8  |-  ( n  =  ( K `  x )  ->  (
n  e.  A  <->  ( K `  x )  e.  A
) )
137 csbeq1 3254 . . . . . . . 8  |-  ( n  =  ( K `  x )  ->  [_ n  /  k ]_ B  =  [_ ( K `  x )  /  k ]_ B )
138 eqidd 2437 . . . . . . . 8  |-  ( n  =  ( K `  x )  ->  0  =  0 )
139136, 137, 138ifbieq12d 3761 . . . . . . 7  |-  ( n  =  ( K `  x )  ->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 )  =  if ( ( K `  x )  e.  A ,  [_ ( K `  x )  /  k ]_ B ,  0 ) )
140 nfcv 2572 . . . . . . . . 9  |-  F/_ n if ( k  e.  A ,  B ,  0 )
141 nfv 1629 . . . . . . . . . 10  |-  F/ k  n  e.  A
142 nfcsb1v 3283 . . . . . . . . . 10  |-  F/_ k [_ n  /  k ]_ B
143141, 142, 123nfif 3763 . . . . . . . . 9  |-  F/_ k if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 )
144 eleq1 2496 . . . . . . . . . 10  |-  ( k  =  n  ->  (
k  e.  A  <->  n  e.  A ) )
145 csbeq1a 3259 . . . . . . . . . 10  |-  ( k  =  n  ->  B  =  [_ n  /  k ]_ B )
146 eqidd 2437 . . . . . . . . . 10  |-  ( k  =  n  ->  0  =  0 )
147144, 145, 146ifbieq12d 3761 . . . . . . . . 9  |-  ( k  =  n  ->  if ( k  e.  A ,  B ,  0 )  =  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) )
148140, 143, 147cbvmpt 4299 . . . . . . . 8  |-  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) )  =  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) )
1491, 148eqtri 2456 . . . . . . 7  |-  F  =  ( n  e.  ZZ  |->  if ( n  e.  A ,  [_ n  /  k ]_ B ,  0 ) )
150139, 149fvmptg 5804 . . . . . 6  |-  ( ( ( K `  x
)  e.  ZZ  /\  if ( ( K `  x )  e.  A ,  [_ ( K `  x )  /  k ]_ B ,  0 )  e.  CC )  -> 
( F `  ( K `  x )
)  =  if ( ( K `  x
)  e.  A ,  [_ ( K `  x
)  /  k ]_ B ,  0 ) )
151119, 135, 150syl2anc 643 . . . . 5  |-  ( (
ph  /\  x  e.  ( 1 ... ( # `
 A ) ) )  ->  ( F `  ( K `  x
) )  =  if ( ( K `  x )  e.  A ,  [_ ( K `  x )  /  k ]_ B ,  0 ) )
152 elfznn 11080 . . . . . . 7  |-  ( x  e.  ( 1 ... ( # `  A
) )  ->  x  e.  NN )
153152adantl 453 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 1 ... ( # `
 A ) ) )  ->  x  e.  NN )
154115, 135eqeltrrd 2511 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 1 ... ( # `
 A ) ) )  ->  [_ ( K `
 x )  / 
k ]_ B  e.  CC )
155 fveq2 5728 . . . . . . . 8  |-  ( n  =  x  ->  ( K `  n )  =  ( K `  x ) )
156155csbeq1d 3257 . . . . . . 7  |-  ( n  =  x  ->  [_ ( K `  n )  /  k ]_ B  =  [_ ( K `  x )  /  k ]_ B )
157 summolem2.4 . . . . . . 7  |-  H  =  ( n  e.  NN  |->  [_ ( K `  n
)  /  k ]_ B )
158156, 157fvmptg 5804 . . . . . 6  |-  ( ( x  e.  NN  /\  [_ ( K `  x
)  /  k ]_ B  e.  CC )  ->  ( H `  x
)  =  [_ ( K `  x )  /  k ]_ B
)
159153, 154, 158syl2anc 643 . . . . 5  |-  ( (
ph  /\  x  e.  ( 1 ... ( # `
 A ) ) )  ->  ( H `  x )  =  [_ ( K `  x )  /  k ]_ B
)
160115, 151, 1593eqtr4rd 2479 . . . 4  |-  ( (
ph  /\  x  e.  ( 1 ... ( # `
 A ) ) )  ->  ( H `  x )  =  ( F `  ( K `
 x ) ) )
16177, 79, 81, 83, 4, 84, 3, 96, 109, 160seqcoll 11712 . . 3  |-  ( ph  ->  (  seq  M (  +  ,  F ) `
 ( K `  N ) )  =  (  seq  1 (  +  ,  H ) `
 N ) )
162 summo.3 . . . 4  |-  G  =  ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B )
16316, 16jca 519 . . . 4  |-  ( ph  ->  ( N  e.  NN  /\  N  e.  NN ) )
1641, 2, 162, 157, 163, 5, 26summolem3 12508 . . 3  |-  ( ph  ->  (  seq  1 (  +  ,  G ) `
 N )  =  (  seq  1 (  +  ,  H ) `
 N ) )
165161, 164eqtr4d 2471 . 2  |-  ( ph  ->  (  seq  M (  +  ,  F ) `
 ( K `  N ) )  =  (  seq  1 (  +  ,  G ) `
 N ) )
16675, 165breqtrd 4236 1  |-  ( ph  ->  seq  M (  +  ,  F )  ~~>  (  seq  1 (  +  ,  G ) `  N
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   [_csb 3251    \ cdif 3317    C_ wss 3320   ifcif 3739   class class class wbr 4212    e. cmpt 4266   `'ccnv 4877   -->wf 5450   -1-1-onto->wf1o 5453   ` cfv 5454    Isom wiso 5455  (class class class)co 6081    ~~ cen 7106   Fincfn 7109   CCcc 8988   RRcr 8989   0cc0 8990   1c1 8991    + caddc 8993   RR*cxr 9119    < clt 9120    <_ cle 9121   NNcn 10000   NN0cn0 10221   ZZcz 10282   ZZ>=cuz 10488   ...cfz 11043    seq cseq 11323   #chash 11618    ~~> cli 12278
This theorem is referenced by:  summolem2  12510  zsum  12512
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-inf2 7596  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-isom 5463  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-oadd 6728  df-er 6905  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-card 7826  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678  df-nn 10001  df-2 10058  df-n0 10222  df-z 10283  df-uz 10489  df-rp 10613  df-fz 11044  df-fzo 11136  df-seq 11324  df-exp 11383  df-hash 11619  df-cj 11904  df-re 11905  df-im 11906  df-sqr 12040  df-abs 12041  df-clim 12282
  Copyright terms: Public domain W3C validator