MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sup3 Structured version   Unicode version

Theorem sup3 9965
Description: A version of the completeness axiom for reals. (Contributed by NM, 12-Oct-2004.)
Assertion
Ref Expression
sup3  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  A  y  <  z ) ) )
Distinct variable group:    x, y, z, A

Proof of Theorem sup3
StepHypRef Expression
1 ssel 3342 . . . . . . . . 9  |-  ( A 
C_  RR  ->  ( y  e.  A  ->  y  e.  RR ) )
2 leloe 9161 . . . . . . . . . 10  |-  ( ( y  e.  RR  /\  x  e.  RR )  ->  ( y  <_  x  <->  ( y  <  x  \/  y  =  x ) ) )
32expcom 425 . . . . . . . . 9  |-  ( x  e.  RR  ->  (
y  e.  RR  ->  ( y  <_  x  <->  ( y  <  x  \/  y  =  x ) ) ) )
41, 3syl9 68 . . . . . . . 8  |-  ( A 
C_  RR  ->  ( x  e.  RR  ->  (
y  e.  A  -> 
( y  <_  x  <->  ( y  <  x  \/  y  =  x ) ) ) ) )
54imp31 422 . . . . . . 7  |-  ( ( ( A  C_  RR  /\  x  e.  RR )  /\  y  e.  A
)  ->  ( y  <_  x  <->  ( y  < 
x  \/  y  =  x ) ) )
65ralbidva 2721 . . . . . 6  |-  ( ( A  C_  RR  /\  x  e.  RR )  ->  ( A. y  e.  A  y  <_  x  <->  A. y  e.  A  ( y  <  x  \/  y  =  x ) ) )
76rexbidva 2722 . . . . 5  |-  ( A 
C_  RR  ->  ( E. x  e.  RR  A. y  e.  A  y  <_  x  <->  E. x  e.  RR  A. y  e.  A  ( y  <  x  \/  y  =  x ) ) )
87anbi2d 685 . . . 4  |-  ( A 
C_  RR  ->  ( ( A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x )  <->  ( A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  ( y  < 
x  \/  y  =  x ) ) ) )
98pm5.32i 619 . . 3  |-  ( ( A  C_  RR  /\  ( A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
) )  <->  ( A  C_  RR  /\  ( A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  ( y  < 
x  \/  y  =  x ) ) ) )
10 3anass 940 . . 3  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  <->  ( A  C_  RR  /\  ( A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
) ) )
11 3anass 940 . . 3  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  ( y  < 
x  \/  y  =  x ) )  <->  ( A  C_  RR  /\  ( A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  ( y  < 
x  \/  y  =  x ) ) ) )
129, 10, 113bitr4i 269 . 2  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  <->  ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  ( y  <  x  \/  y  =  x ) ) )
13 sup2 9964 . 2  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  ( y  < 
x  \/  y  =  x ) )  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) )
1412, 13sylbi 188 1  |-  ( ( A  C_  RR  /\  A  =/=  (/)  /\  E. x  e.  RR  A. y  e.  A  y  <_  x
)  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  A  y  <  z ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    /\ w3a 936    e. wcel 1725    =/= wne 2599   A.wral 2705   E.wrex 2706    C_ wss 3320   (/)c0 3628   class class class wbr 4212   RRcr 8989    < clt 9120    <_ cle 9121
This theorem is referenced by:  infm3  9967  suprcl  9968  suprub  9969  suprlub  9970  sup3ii  9977  xrsupsslem  10885
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067  ax-pre-sup 9068
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-po 4503  df-so 4504  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-riota 6549  df-er 6905  df-en 7110  df-dom 7111  df-sdom 7112  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294
  Copyright terms: Public domain W3C validator