MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supeq1 Unicode version

Theorem supeq1 7198
Description: Equality theorem for supremum. (Contributed by NM, 22-May-1999.)
Assertion
Ref Expression
supeq1  |-  ( B  =  C  ->  sup ( B ,  A ,  R )  =  sup ( C ,  A ,  R ) )

Proof of Theorem supeq1
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 raleq 2736 . . . . 5  |-  ( B  =  C  ->  ( A. y  e.  B  -.  x R y  <->  A. y  e.  C  -.  x R y ) )
2 rexeq 2737 . . . . . . 7  |-  ( B  =  C  ->  ( E. z  e.  B  y R z  <->  E. z  e.  C  y R
z ) )
32imbi2d 307 . . . . . 6  |-  ( B  =  C  ->  (
( y R x  ->  E. z  e.  B  y R z )  <->  ( y R x  ->  E. z  e.  C  y R
z ) ) )
43ralbidv 2563 . . . . 5  |-  ( B  =  C  ->  ( A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z )  <->  A. y  e.  A  ( y R x  ->  E. z  e.  C  y R
z ) ) )
51, 4anbi12d 691 . . . 4  |-  ( B  =  C  ->  (
( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R
z ) )  <->  ( A. y  e.  C  -.  x R y  /\  A. y  e.  A  (
y R x  ->  E. z  e.  C  y R z ) ) ) )
65rabbidv 2780 . . 3  |-  ( B  =  C  ->  { x  e.  A  |  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) }  =  { x  e.  A  |  ( A. y  e.  C  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  C  y R z ) ) } )
76unieqd 3838 . 2  |-  ( B  =  C  ->  U. {
x  e.  A  | 
( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R
z ) ) }  =  U. { x  e.  A  |  ( A. y  e.  C  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  C  y R z ) ) } )
8 df-sup 7194 . 2  |-  sup ( B ,  A ,  R )  =  U. { x  e.  A  |  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  (
y R x  ->  E. z  e.  B  y R z ) ) }
9 df-sup 7194 . 2  |-  sup ( C ,  A ,  R )  =  U. { x  e.  A  |  ( A. y  e.  C  -.  x R y  /\  A. y  e.  A  (
y R x  ->  E. z  e.  C  y R z ) ) }
107, 8, 93eqtr4g 2340 1  |-  ( B  =  C  ->  sup ( B ,  A ,  R )  =  sup ( C ,  A ,  R ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    = wceq 1623   A.wral 2543   E.wrex 2544   {crab 2547   U.cuni 3827   class class class wbr 4023   supcsup 7193
This theorem is referenced by:  supeq1d  7199  supeq1i  7200  ramcl2lem  13056  odval  14849  submod  14880  bndth  18456  ioorval  18929  uniioombllem6  18943  mdegcl  19455
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ral 2548  df-rex 2549  df-rab 2552  df-uni 3828  df-sup 7194
  Copyright terms: Public domain W3C validator