MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supeq1 Structured version   Unicode version

Theorem supeq1 7450
Description: Equality theorem for supremum. (Contributed by NM, 22-May-1999.)
Assertion
Ref Expression
supeq1  |-  ( B  =  C  ->  sup ( B ,  A ,  R )  =  sup ( C ,  A ,  R ) )

Proof of Theorem supeq1
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 raleq 2904 . . . . 5  |-  ( B  =  C  ->  ( A. y  e.  B  -.  x R y  <->  A. y  e.  C  -.  x R y ) )
2 rexeq 2905 . . . . . . 7  |-  ( B  =  C  ->  ( E. z  e.  B  y R z  <->  E. z  e.  C  y R
z ) )
32imbi2d 308 . . . . . 6  |-  ( B  =  C  ->  (
( y R x  ->  E. z  e.  B  y R z )  <->  ( y R x  ->  E. z  e.  C  y R
z ) ) )
43ralbidv 2725 . . . . 5  |-  ( B  =  C  ->  ( A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z )  <->  A. y  e.  A  ( y R x  ->  E. z  e.  C  y R
z ) ) )
51, 4anbi12d 692 . . . 4  |-  ( B  =  C  ->  (
( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R
z ) )  <->  ( A. y  e.  C  -.  x R y  /\  A. y  e.  A  (
y R x  ->  E. z  e.  C  y R z ) ) ) )
65rabbidv 2948 . . 3  |-  ( B  =  C  ->  { x  e.  A  |  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) }  =  { x  e.  A  |  ( A. y  e.  C  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  C  y R z ) ) } )
76unieqd 4026 . 2  |-  ( B  =  C  ->  U. {
x  e.  A  | 
( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R
z ) ) }  =  U. { x  e.  A  |  ( A. y  e.  C  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  C  y R z ) ) } )
8 df-sup 7446 . 2  |-  sup ( B ,  A ,  R )  =  U. { x  e.  A  |  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  (
y R x  ->  E. z  e.  B  y R z ) ) }
9 df-sup 7446 . 2  |-  sup ( C ,  A ,  R )  =  U. { x  e.  A  |  ( A. y  e.  C  -.  x R y  /\  A. y  e.  A  (
y R x  ->  E. z  e.  C  y R z ) ) }
107, 8, 93eqtr4g 2493 1  |-  ( B  =  C  ->  sup ( B ,  A ,  R )  =  sup ( C ,  A ,  R ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    = wceq 1652   A.wral 2705   E.wrex 2706   {crab 2709   U.cuni 4015   class class class wbr 4212   supcsup 7445
This theorem is referenced by:  supeq1d  7451  supeq1i  7452  ramcl2lem  13377  odval  15172  submod  15203  bndth  18983  ioorval  19466  uniioombllem6  19480  mdegcl  19992
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ral 2710  df-rex 2711  df-rab 2714  df-uni 4016  df-sup 7446
  Copyright terms: Public domain W3C validator