Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  supeq123d Unicode version

Theorem supeq123d 27158
Description: Equality deduction for supremum. (Contributed by Stefan O'Rear, 20-Jan-2015.)
Hypotheses
Ref Expression
supeq123d.a  |-  ( ph  ->  A  =  D )
supeq123d.b  |-  ( ph  ->  B  =  E )
supeq123d.c  |-  ( ph  ->  C  =  F )
Assertion
Ref Expression
supeq123d  |-  ( ph  ->  sup ( A ,  B ,  C )  =  sup ( D ,  E ,  F )
)

Proof of Theorem supeq123d
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 supeq123d.b . . . 4  |-  ( ph  ->  B  =  E )
2 supeq123d.a . . . . . 6  |-  ( ph  ->  A  =  D )
3 supeq123d.c . . . . . . . 8  |-  ( ph  ->  C  =  F )
43breqd 4034 . . . . . . 7  |-  ( ph  ->  ( x C y  <-> 
x F y ) )
54notbid 285 . . . . . 6  |-  ( ph  ->  ( -.  x C y  <->  -.  x F
y ) )
62, 5raleqbidv 2748 . . . . 5  |-  ( ph  ->  ( A. y  e.  A  -.  x C y  <->  A. y  e.  D  -.  x F y ) )
73breqd 4034 . . . . . . 7  |-  ( ph  ->  ( y C x  <-> 
y F x ) )
83breqd 4034 . . . . . . . 8  |-  ( ph  ->  ( y C z  <-> 
y F z ) )
92, 8rexeqbidv 2749 . . . . . . 7  |-  ( ph  ->  ( E. z  e.  A  y C z  <->  E. z  e.  D  y F z ) )
107, 9imbi12d 311 . . . . . 6  |-  ( ph  ->  ( ( y C x  ->  E. z  e.  A  y C
z )  <->  ( y F x  ->  E. z  e.  D  y F
z ) ) )
111, 10raleqbidv 2748 . . . . 5  |-  ( ph  ->  ( A. y  e.  B  ( y C x  ->  E. z  e.  A  y C
z )  <->  A. y  e.  E  ( y F x  ->  E. z  e.  D  y F
z ) ) )
126, 11anbi12d 691 . . . 4  |-  ( ph  ->  ( ( A. y  e.  A  -.  x C y  /\  A. y  e.  B  (
y C x  ->  E. z  e.  A  y C z ) )  <-> 
( A. y  e.  D  -.  x F y  /\  A. y  e.  E  ( y F x  ->  E. z  e.  D  y F
z ) ) ) )
131, 12rabeqbidv 2783 . . 3  |-  ( ph  ->  { x  e.  B  |  ( A. y  e.  A  -.  x C y  /\  A. y  e.  B  (
y C x  ->  E. z  e.  A  y C z ) ) }  =  { x  e.  E  |  ( A. y  e.  D  -.  x F y  /\  A. y  e.  E  ( y F x  ->  E. z  e.  D  y F z ) ) } )
1413unieqd 3838 . 2  |-  ( ph  ->  U. { x  e.  B  |  ( A. y  e.  A  -.  x C y  /\  A. y  e.  B  (
y C x  ->  E. z  e.  A  y C z ) ) }  =  U. {
x  e.  E  | 
( A. y  e.  D  -.  x F y  /\  A. y  e.  E  ( y F x  ->  E. z  e.  D  y F
z ) ) } )
15 df-sup 7194 . 2  |-  sup ( A ,  B ,  C )  =  U. { x  e.  B  |  ( A. y  e.  A  -.  x C y  /\  A. y  e.  B  (
y C x  ->  E. z  e.  A  y C z ) ) }
16 df-sup 7194 . 2  |-  sup ( D ,  E ,  F )  =  U. { x  e.  E  |  ( A. y  e.  D  -.  x F y  /\  A. y  e.  E  (
y F x  ->  E. z  e.  D  y F z ) ) }
1714, 15, 163eqtr4g 2340 1  |-  ( ph  ->  sup ( A ,  B ,  C )  =  sup ( D ,  E ,  F )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    = wceq 1623   A.wral 2543   E.wrex 2544   {crab 2547   U.cuni 3827   class class class wbr 4023   supcsup 7193
This theorem is referenced by:  aomclem8  27159
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ral 2548  df-rex 2549  df-rab 2552  df-uni 3828  df-br 4024  df-sup 7194
  Copyright terms: Public domain W3C validator