MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supeq2 Unicode version

Theorem supeq2 7419
Description: Equality theorem for supremum. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
supeq2  |-  ( B  =  C  ->  sup ( A ,  B ,  R )  =  sup ( A ,  C ,  R ) )

Proof of Theorem supeq2
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rabeq 2918 . . . 4  |-  ( B  =  C  ->  { x  e.  B  |  ( A. y  e.  A  -.  x R y  /\  A. y  e.  B  ( y R x  ->  E. z  e.  A  y R z ) ) }  =  { x  e.  C  |  ( A. y  e.  A  -.  x R y  /\  A. y  e.  B  ( y R x  ->  E. z  e.  A  y R z ) ) } )
2 raleq 2872 . . . . . 6  |-  ( B  =  C  ->  ( A. y  e.  B  ( y R x  ->  E. z  e.  A  y R z )  <->  A. y  e.  C  ( y R x  ->  E. z  e.  A  y R
z ) ) )
32anbi2d 685 . . . . 5  |-  ( B  =  C  ->  (
( A. y  e.  A  -.  x R y  /\  A. y  e.  B  ( y R x  ->  E. z  e.  A  y R
z ) )  <->  ( A. y  e.  A  -.  x R y  /\  A. y  e.  C  (
y R x  ->  E. z  e.  A  y R z ) ) ) )
43rabbidv 2916 . . . 4  |-  ( B  =  C  ->  { x  e.  C  |  ( A. y  e.  A  -.  x R y  /\  A. y  e.  B  ( y R x  ->  E. z  e.  A  y R z ) ) }  =  { x  e.  C  |  ( A. y  e.  A  -.  x R y  /\  A. y  e.  C  ( y R x  ->  E. z  e.  A  y R z ) ) } )
51, 4eqtrd 2444 . . 3  |-  ( B  =  C  ->  { x  e.  B  |  ( A. y  e.  A  -.  x R y  /\  A. y  e.  B  ( y R x  ->  E. z  e.  A  y R z ) ) }  =  { x  e.  C  |  ( A. y  e.  A  -.  x R y  /\  A. y  e.  C  ( y R x  ->  E. z  e.  A  y R z ) ) } )
65unieqd 3994 . 2  |-  ( B  =  C  ->  U. {
x  e.  B  | 
( A. y  e.  A  -.  x R y  /\  A. y  e.  B  ( y R x  ->  E. z  e.  A  y R
z ) ) }  =  U. { x  e.  C  |  ( A. y  e.  A  -.  x R y  /\  A. y  e.  C  ( y R x  ->  E. z  e.  A  y R z ) ) } )
7 df-sup 7412 . 2  |-  sup ( A ,  B ,  R )  =  U. { x  e.  B  |  ( A. y  e.  A  -.  x R y  /\  A. y  e.  B  (
y R x  ->  E. z  e.  A  y R z ) ) }
8 df-sup 7412 . 2  |-  sup ( A ,  C ,  R )  =  U. { x  e.  C  |  ( A. y  e.  A  -.  x R y  /\  A. y  e.  C  (
y R x  ->  E. z  e.  A  y R z ) ) }
96, 7, 83eqtr4g 2469 1  |-  ( B  =  C  ->  sup ( A ,  B ,  R )  =  sup ( A ,  C ,  R ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    = wceq 1649   A.wral 2674   E.wrex 2675   {crab 2678   U.cuni 3983   class class class wbr 4180   supcsup 7411
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393
This theorem depends on definitions:  df-bi 178  df-an 361  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ral 2679  df-rex 2680  df-rab 2683  df-uni 3984  df-sup 7412
  Copyright terms: Public domain W3C validator