HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  superpos Unicode version

Theorem superpos 22934
Description: Superposition Principle. If  A and  B are distinct atoms, there exists a third atom, distinct from  A and  B, that is the superposition of  A and  B. Definition 3.4-3(a) in [MegPav2000] p. 2345 (PDF p. 8). (Contributed by NM, 9-Jun-2006.) (New usage is discouraged.)
Assertion
Ref Expression
superpos  |-  ( ( A  e. HAtoms  /\  B  e. HAtoms  /\  A  =/=  B
)  ->  E. x  e. HAtoms  ( x  =/=  A  /\  x  =/=  B  /\  x  C_  ( A  vH  B ) ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem superpos
Dummy variables  y 
z  w  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 atom1d 22933 . . 3  |-  ( A  e. HAtoms 
<->  E. y  e.  ~H  ( y  =/=  0h  /\  A  =  ( span `  { y } ) ) )
2 atom1d 22933 . . 3  |-  ( B  e. HAtoms 
<->  E. z  e.  ~H  ( z  =/=  0h  /\  B  =  ( span `  { z } ) ) )
3 reeanv 2707 . . . 4  |-  ( E. y  e.  ~H  E. z  e.  ~H  (
( y  =/=  0h  /\  A  =  ( span `  { y } ) )  /\  ( z  =/=  0h  /\  B  =  ( span `  {
z } ) ) )  <->  ( E. y  e.  ~H  ( y  =/= 
0h  /\  A  =  ( span `  { y } ) )  /\  E. z  e.  ~H  (
z  =/=  0h  /\  B  =  ( span `  { z } ) ) ) )
4 an4 797 . . . . . 6  |-  ( ( ( y  =/=  0h  /\  A  =  ( span `  { y } ) )  /\  ( z  =/=  0h  /\  B  =  ( span `  {
z } ) ) )  <->  ( ( y  =/=  0h  /\  z  =/=  0h )  /\  ( A  =  ( span `  { y } )  /\  B  =  (
span `  { z } ) ) ) )
5 neeq1 2454 . . . . . . . . . 10  |-  ( A  =  ( span `  {
y } )  -> 
( A  =/=  B  <->  (
span `  { y } )  =/=  B
) )
6 neeq2 2455 . . . . . . . . . 10  |-  ( B  =  ( span `  {
z } )  -> 
( ( span `  {
y } )  =/= 
B  <->  ( span `  {
y } )  =/=  ( span `  {
z } ) ) )
75, 6sylan9bb 680 . . . . . . . . 9  |-  ( ( A  =  ( span `  { y } )  /\  B  =  (
span `  { z } ) )  -> 
( A  =/=  B  <->  (
span `  { y } )  =/=  ( span `  { z } ) ) )
87adantl 452 . . . . . . . 8  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  (
y  =/=  0h  /\  z  =/=  0h ) )  /\  ( A  =  ( span `  {
y } )  /\  B  =  ( span `  { z } ) ) )  ->  ( A  =/=  B  <->  ( span `  { y } )  =/=  ( span `  {
z } ) ) )
9 hvaddcl 21592 . . . . . . . . . . . . . 14  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( y  +h  z
)  e.  ~H )
109adantr 451 . . . . . . . . . . . . 13  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  ( span `  {
y } )  =/=  ( span `  {
z } ) )  ->  ( y  +h  z )  e.  ~H )
11 hvaddeq0 21648 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( ( y  +h  z )  =  0h  <->  y  =  ( -u 1  .h  z ) ) )
12 sneq 3651 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  ( -u 1  .h  z )  ->  { y }  =  { (
-u 1  .h  z
) } )
1312fveq2d 5529 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  ( -u 1  .h  z )  ->  ( span `  { y } )  =  ( span `  { ( -u 1  .h  z ) } ) )
14 neg1cn 9813 . . . . . . . . . . . . . . . . . . . 20  |-  -u 1  e.  CC
15 ax-1cn 8795 . . . . . . . . . . . . . . . . . . . . 21  |-  1  e.  CC
16 ax-1ne0 8806 . . . . . . . . . . . . . . . . . . . . 21  |-  1  =/=  0
1715, 16negne0i 9121 . . . . . . . . . . . . . . . . . . . 20  |-  -u 1  =/=  0
18 spansncol 22147 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( z  e.  ~H  /\  -u 1  e.  CC  /\  -u 1  =/=  0 )  ->  ( span `  {
( -u 1  .h  z
) } )  =  ( span `  {
z } ) )
1914, 17, 18mp3an23 1269 . . . . . . . . . . . . . . . . . . 19  |-  ( z  e.  ~H  ->  ( span `  { ( -u
1  .h  z ) } )  =  (
span `  { z } ) )
2013, 19sylan9eqr 2337 . . . . . . . . . . . . . . . . . 18  |-  ( ( z  e.  ~H  /\  y  =  ( -u 1  .h  z ) )  -> 
( span `  { y } )  =  (
span `  { z } ) )
2120ex 423 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  ~H  ->  (
y  =  ( -u
1  .h  z )  ->  ( span `  {
y } )  =  ( span `  {
z } ) ) )
2221adantl 452 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( y  =  (
-u 1  .h  z
)  ->  ( span `  { y } )  =  ( span `  {
z } ) ) )
2311, 22sylbid 206 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( ( y  +h  z )  =  0h  ->  ( span `  {
y } )  =  ( span `  {
z } ) ) )
2423necon3d 2484 . . . . . . . . . . . . . 14  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( ( span `  {
y } )  =/=  ( span `  {
z } )  -> 
( y  +h  z
)  =/=  0h )
)
2524imp 418 . . . . . . . . . . . . 13  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  ( span `  {
y } )  =/=  ( span `  {
z } ) )  ->  ( y  +h  z )  =/=  0h )
26 spansna 22930 . . . . . . . . . . . . 13  |-  ( ( ( y  +h  z
)  e.  ~H  /\  ( y  +h  z
)  =/=  0h )  ->  ( span `  {
( y  +h  z
) } )  e. HAtoms
)
2710, 25, 26syl2anc 642 . . . . . . . . . . . 12  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  ( span `  {
y } )  =/=  ( span `  {
z } ) )  ->  ( span `  {
( y  +h  z
) } )  e. HAtoms
)
2827adantlr 695 . . . . . . . . . . 11  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  (
y  =/=  0h  /\  z  =/=  0h ) )  /\  ( span `  {
y } )  =/=  ( span `  {
z } ) )  ->  ( span `  {
( y  +h  z
) } )  e. HAtoms
)
2928adantlr 695 . . . . . . . . . 10  |-  ( ( ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  (
y  =/=  0h  /\  z  =/=  0h ) )  /\  ( A  =  ( span `  {
y } )  /\  B  =  ( span `  { z } ) ) )  /\  ( span `  { y } )  =/=  ( span `  { z } ) )  ->  ( span `  { ( y  +h  z ) } )  e. HAtoms )
30 eqeq2 2292 . . . . . . . . . . . . . . . 16  |-  ( A  =  ( span `  {
y } )  -> 
( ( span `  {
( y  +h  z
) } )  =  A  <->  ( span `  {
( y  +h  z
) } )  =  ( span `  {
y } ) ) )
3130biimpd 198 . . . . . . . . . . . . . . 15  |-  ( A  =  ( span `  {
y } )  -> 
( ( span `  {
( y  +h  z
) } )  =  A  ->  ( span `  { ( y  +h  z ) } )  =  ( span `  {
y } ) ) )
32 spansneleqi 22148 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( y  +h  z )  e.  ~H  ->  (
( span `  { (
y  +h  z ) } )  =  (
span `  { y } )  ->  (
y  +h  z )  e.  ( span `  {
y } ) ) )
339, 32syl 15 . . . . . . . . . . . . . . . . . . 19  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( ( span `  {
( y  +h  z
) } )  =  ( span `  {
y } )  -> 
( y  +h  z
)  e.  ( span `  { y } ) ) )
34 elspansn 22145 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  e.  ~H  ->  (
( y  +h  z
)  e.  ( span `  { y } )  <->  E. v  e.  CC  ( y  +h  z
)  =  ( v  .h  y ) ) )
3534adantr 451 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( ( y  +h  z )  e.  (
span `  { y } )  <->  E. v  e.  CC  ( y  +h  z )  =  ( v  .h  y ) ) )
36 addcl 8819 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( v  e.  CC  /\  -u 1  e.  CC )  ->  ( v  + 
-u 1 )  e.  CC )
3714, 36mpan2 652 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( v  e.  CC  ->  (
v  +  -u 1
)  e.  CC )
3837ad2antlr 707 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  v  e.  CC )  /\  (
y  +h  z )  =  ( v  .h  y ) )  -> 
( v  +  -u
1 )  e.  CC )
39 hvmulcl 21593 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( v  e.  CC  /\  y  e.  ~H )  ->  ( v  .h  y
)  e.  ~H )
4039ancoms 439 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( y  e.  ~H  /\  v  e.  CC )  ->  ( v  .h  y
)  e.  ~H )
4140adantlr 695 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  v  e.  CC )  ->  ( v  .h  y )  e.  ~H )
42 simpll 730 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  v  e.  CC )  ->  y  e.  ~H )
43 simplr 731 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  v  e.  CC )  ->  z  e.  ~H )
44 hvsubadd 21656 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( v  .h  y
)  e.  ~H  /\  y  e.  ~H  /\  z  e.  ~H )  ->  (
( ( v  .h  y )  -h  y
)  =  z  <->  ( y  +h  z )  =  ( v  .h  y ) ) )
4541, 42, 43, 44syl3anc 1182 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  v  e.  CC )  ->  ( ( ( v  .h  y )  -h  y )  =  z  <->  ( y  +h  z )  =  ( v  .h  y ) ) )
4645biimpar 471 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  v  e.  CC )  /\  (
y  +h  z )  =  ( v  .h  y ) )  -> 
( ( v  .h  y )  -h  y
)  =  z )
47 hvsubval 21596 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( v  .h  y
)  e.  ~H  /\  y  e.  ~H )  ->  ( ( v  .h  y )  -h  y
)  =  ( ( v  .h  y )  +h  ( -u 1  .h  y ) ) )
4839, 47sylancom 648 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( v  e.  CC  /\  y  e.  ~H )  ->  ( ( v  .h  y )  -h  y
)  =  ( ( v  .h  y )  +h  ( -u 1  .h  y ) ) )
49 ax-hvdistr2 21589 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( v  e.  CC  /\  -u 1  e.  CC  /\  y  e.  ~H )  ->  ( ( v  + 
-u 1 )  .h  y )  =  ( ( v  .h  y
)  +h  ( -u
1  .h  y ) ) )
5014, 49mp3an2 1265 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( v  e.  CC  /\  y  e.  ~H )  ->  ( ( v  + 
-u 1 )  .h  y )  =  ( ( v  .h  y
)  +h  ( -u
1  .h  y ) ) )
5148, 50eqtr4d 2318 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( v  e.  CC  /\  y  e.  ~H )  ->  ( ( v  .h  y )  -h  y
)  =  ( ( v  +  -u 1
)  .h  y ) )
5251ancoms 439 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( y  e.  ~H  /\  v  e.  CC )  ->  ( ( v  .h  y )  -h  y
)  =  ( ( v  +  -u 1
)  .h  y ) )
5352adantlr 695 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  v  e.  CC )  ->  ( ( v  .h  y )  -h  y )  =  ( ( v  +  -u
1 )  .h  y
) )
5453adantr 451 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  v  e.  CC )  /\  (
y  +h  z )  =  ( v  .h  y ) )  -> 
( ( v  .h  y )  -h  y
)  =  ( ( v  +  -u 1
)  .h  y ) )
5546, 54eqtr3d 2317 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  v  e.  CC )  /\  (
y  +h  z )  =  ( v  .h  y ) )  -> 
z  =  ( ( v  +  -u 1
)  .h  y ) )
56 oveq1 5865 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( w  =  ( v  + 
-u 1 )  -> 
( w  .h  y
)  =  ( ( v  +  -u 1
)  .h  y ) )
5756eqeq2d 2294 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( w  =  ( v  + 
-u 1 )  -> 
( z  =  ( w  .h  y )  <-> 
z  =  ( ( v  +  -u 1
)  .h  y ) ) )
5857rspcev 2884 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( v  +  -u
1 )  e.  CC  /\  z  =  ( ( v  +  -u 1
)  .h  y ) )  ->  E. w  e.  CC  z  =  ( w  .h  y ) )
5938, 55, 58syl2anc 642 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  v  e.  CC )  /\  (
y  +h  z )  =  ( v  .h  y ) )  ->  E. w  e.  CC  z  =  ( w  .h  y ) )
6059exp31 587 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( v  e.  CC  ->  ( ( y  +h  z )  =  ( v  .h  y )  ->  E. w  e.  CC  z  =  ( w  .h  y ) ) ) )
6160rexlimdv 2666 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( E. v  e.  CC  ( y  +h  z )  =  ( v  .h  y )  ->  E. w  e.  CC  z  =  ( w  .h  y ) ) )
6235, 61sylbid 206 . . . . . . . . . . . . . . . . . . 19  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( ( y  +h  z )  e.  (
span `  { y } )  ->  E. w  e.  CC  z  =  ( w  .h  y ) ) )
6333, 62syld 40 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( ( span `  {
( y  +h  z
) } )  =  ( span `  {
y } )  ->  E. w  e.  CC  z  =  ( w  .h  y ) ) )
64 elspansn 22145 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  ~H  ->  (
z  e.  ( span `  { y } )  <->  E. w  e.  CC  z  =  ( w  .h  y ) ) )
6564adantr 451 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( z  e.  (
span `  { y } )  <->  E. w  e.  CC  z  =  ( w  .h  y ) ) )
6663, 65sylibrd 225 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( ( span `  {
( y  +h  z
) } )  =  ( span `  {
y } )  -> 
z  e.  ( span `  { y } ) ) )
6766adantr 451 . . . . . . . . . . . . . . . 16  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  z  =/=  0h )  ->  ( ( span `  {
( y  +h  z
) } )  =  ( span `  {
y } )  -> 
z  e.  ( span `  { y } ) ) )
68 spansneleq 22149 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  e.  ~H  /\  z  =/=  0h )  -> 
( z  e.  (
span `  { y } )  ->  ( span `  { z } )  =  ( span `  { y } ) ) )
69 eqcom 2285 . . . . . . . . . . . . . . . . . 18  |-  ( (
span `  { z } )  =  (
span `  { y } )  <->  ( span `  { y } )  =  ( span `  {
z } ) )
7068, 69syl6ib 217 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  ~H  /\  z  =/=  0h )  -> 
( z  e.  (
span `  { y } )  ->  ( span `  { y } )  =  ( span `  { z } ) ) )
7170adantlr 695 . . . . . . . . . . . . . . . 16  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  z  =/=  0h )  ->  ( z  e.  (
span `  { y } )  ->  ( span `  { y } )  =  ( span `  { z } ) ) )
7267, 71syld 40 . . . . . . . . . . . . . . 15  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  z  =/=  0h )  ->  ( ( span `  {
( y  +h  z
) } )  =  ( span `  {
y } )  -> 
( span `  { y } )  =  (
span `  { z } ) ) )
7331, 72sylan9r 639 . . . . . . . . . . . . . 14  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  z  =/=  0h )  /\  A  =  ( span `  {
y } ) )  ->  ( ( span `  { ( y  +h  z ) } )  =  A  ->  ( span `  { y } )  =  ( span `  { z } ) ) )
7473necon3d 2484 . . . . . . . . . . . . 13  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  z  =/=  0h )  /\  A  =  ( span `  {
y } ) )  ->  ( ( span `  { y } )  =/=  ( span `  {
z } )  -> 
( span `  { (
y  +h  z ) } )  =/=  A
) )
7574adantlrl 700 . . . . . . . . . . . 12  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  (
y  =/=  0h  /\  z  =/=  0h ) )  /\  A  =  (
span `  { y } ) )  -> 
( ( span `  {
y } )  =/=  ( span `  {
z } )  -> 
( span `  { (
y  +h  z ) } )  =/=  A
) )
7675adantrr 697 . . . . . . . . . . 11  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  (
y  =/=  0h  /\  z  =/=  0h ) )  /\  ( A  =  ( span `  {
y } )  /\  B  =  ( span `  { z } ) ) )  ->  (
( span `  { y } )  =/=  ( span `  { z } )  ->  ( span `  { ( y  +h  z ) } )  =/=  A ) )
7776imp 418 . . . . . . . . . 10  |-  ( ( ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  (
y  =/=  0h  /\  z  =/=  0h ) )  /\  ( A  =  ( span `  {
y } )  /\  B  =  ( span `  { z } ) ) )  /\  ( span `  { y } )  =/=  ( span `  { z } ) )  ->  ( span `  { ( y  +h  z ) } )  =/=  A )
78 eqeq2 2292 . . . . . . . . . . . . . . . 16  |-  ( B  =  ( span `  {
z } )  -> 
( ( span `  {
( y  +h  z
) } )  =  B  <->  ( span `  {
( y  +h  z
) } )  =  ( span `  {
z } ) ) )
7978biimpd 198 . . . . . . . . . . . . . . 15  |-  ( B  =  ( span `  {
z } )  -> 
( ( span `  {
( y  +h  z
) } )  =  B  ->  ( span `  { ( y  +h  z ) } )  =  ( span `  {
z } ) ) )
80 spansneleqi 22148 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( y  +h  z )  e.  ~H  ->  (
( span `  { (
y  +h  z ) } )  =  (
span `  { z } )  ->  (
y  +h  z )  e.  ( span `  {
z } ) ) )
819, 80syl 15 . . . . . . . . . . . . . . . . . . 19  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( ( span `  {
( y  +h  z
) } )  =  ( span `  {
z } )  -> 
( y  +h  z
)  e.  ( span `  { z } ) ) )
82 elspansn 22145 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  e.  ~H  ->  (
( y  +h  z
)  e.  ( span `  { z } )  <->  E. v  e.  CC  ( y  +h  z
)  =  ( v  .h  z ) ) )
8382adantl 452 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( ( y  +h  z )  e.  (
span `  { z } )  <->  E. v  e.  CC  ( y  +h  z )  =  ( v  .h  z ) ) )
8437ad2antlr 707 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  v  e.  CC )  /\  (
y  +h  z )  =  ( v  .h  z ) )  -> 
( v  +  -u
1 )  e.  CC )
85 hvmulcl 21593 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( v  e.  CC  /\  z  e.  ~H )  ->  ( v  .h  z
)  e.  ~H )
8685ancoms 439 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( z  e.  ~H  /\  v  e.  CC )  ->  ( v  .h  z
)  e.  ~H )
8786adantll 694 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  v  e.  CC )  ->  ( v  .h  z )  e.  ~H )
88 hvsubadd 21656 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( v  .h  z
)  e.  ~H  /\  z  e.  ~H  /\  y  e.  ~H )  ->  (
( ( v  .h  z )  -h  z
)  =  y  <->  ( z  +h  y )  =  ( v  .h  z ) ) )
8987, 43, 42, 88syl3anc 1182 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  v  e.  CC )  ->  ( ( ( v  .h  z )  -h  z )  =  y  <->  ( z  +h  y )  =  ( v  .h  z ) ) )
90 ax-hvcom 21581 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( y  +h  z
)  =  ( z  +h  y ) )
9190adantr 451 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  v  e.  CC )  ->  ( y  +h  z )  =  ( z  +h  y ) )
9291eqeq1d 2291 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  v  e.  CC )  ->  ( ( y  +h  z )  =  ( v  .h  z
)  <->  ( z  +h  y )  =  ( v  .h  z ) ) )
9389, 92bitr4d 247 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  v  e.  CC )  ->  ( ( ( v  .h  z )  -h  z )  =  y  <->  ( y  +h  z )  =  ( v  .h  z ) ) )
9493biimpar 471 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  v  e.  CC )  /\  (
y  +h  z )  =  ( v  .h  z ) )  -> 
( ( v  .h  z )  -h  z
)  =  y )
95 hvsubval 21596 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( v  .h  z
)  e.  ~H  /\  z  e.  ~H )  ->  ( ( v  .h  z )  -h  z
)  =  ( ( v  .h  z )  +h  ( -u 1  .h  z ) ) )
9685, 95sylancom 648 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( v  e.  CC  /\  z  e.  ~H )  ->  ( ( v  .h  z )  -h  z
)  =  ( ( v  .h  z )  +h  ( -u 1  .h  z ) ) )
97 ax-hvdistr2 21589 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( v  e.  CC  /\  -u 1  e.  CC  /\  z  e.  ~H )  ->  ( ( v  + 
-u 1 )  .h  z )  =  ( ( v  .h  z
)  +h  ( -u
1  .h  z ) ) )
9814, 97mp3an2 1265 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( v  e.  CC  /\  z  e.  ~H )  ->  ( ( v  + 
-u 1 )  .h  z )  =  ( ( v  .h  z
)  +h  ( -u
1  .h  z ) ) )
9996, 98eqtr4d 2318 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( v  e.  CC  /\  z  e.  ~H )  ->  ( ( v  .h  z )  -h  z
)  =  ( ( v  +  -u 1
)  .h  z ) )
10099ancoms 439 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( z  e.  ~H  /\  v  e.  CC )  ->  ( ( v  .h  z )  -h  z
)  =  ( ( v  +  -u 1
)  .h  z ) )
101100adantll 694 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  v  e.  CC )  ->  ( ( v  .h  z )  -h  z )  =  ( ( v  +  -u
1 )  .h  z
) )
102101adantr 451 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  v  e.  CC )  /\  (
y  +h  z )  =  ( v  .h  z ) )  -> 
( ( v  .h  z )  -h  z
)  =  ( ( v  +  -u 1
)  .h  z ) )
10394, 102eqtr3d 2317 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  v  e.  CC )  /\  (
y  +h  z )  =  ( v  .h  z ) )  -> 
y  =  ( ( v  +  -u 1
)  .h  z ) )
104 oveq1 5865 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( w  =  ( v  + 
-u 1 )  -> 
( w  .h  z
)  =  ( ( v  +  -u 1
)  .h  z ) )
105104eqeq2d 2294 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( w  =  ( v  + 
-u 1 )  -> 
( y  =  ( w  .h  z )  <-> 
y  =  ( ( v  +  -u 1
)  .h  z ) ) )
106105rspcev 2884 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( v  +  -u
1 )  e.  CC  /\  y  =  ( ( v  +  -u 1
)  .h  z ) )  ->  E. w  e.  CC  y  =  ( w  .h  z ) )
10784, 103, 106syl2anc 642 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  v  e.  CC )  /\  (
y  +h  z )  =  ( v  .h  z ) )  ->  E. w  e.  CC  y  =  ( w  .h  z ) )
108107exp31 587 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( v  e.  CC  ->  ( ( y  +h  z )  =  ( v  .h  z )  ->  E. w  e.  CC  y  =  ( w  .h  z ) ) ) )
109108rexlimdv 2666 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( E. v  e.  CC  ( y  +h  z )  =  ( v  .h  z )  ->  E. w  e.  CC  y  =  ( w  .h  z ) ) )
11083, 109sylbid 206 . . . . . . . . . . . . . . . . . . 19  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( ( y  +h  z )  e.  (
span `  { z } )  ->  E. w  e.  CC  y  =  ( w  .h  z ) ) )
11181, 110syld 40 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( ( span `  {
( y  +h  z
) } )  =  ( span `  {
z } )  ->  E. w  e.  CC  y  =  ( w  .h  z ) ) )
112 elspansn 22145 . . . . . . . . . . . . . . . . . . 19  |-  ( z  e.  ~H  ->  (
y  e.  ( span `  { z } )  <->  E. w  e.  CC  y  =  ( w  .h  z ) ) )
113112adantl 452 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( y  e.  (
span `  { z } )  <->  E. w  e.  CC  y  =  ( w  .h  z ) ) )
114111, 113sylibrd 225 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( ( span `  {
( y  +h  z
) } )  =  ( span `  {
z } )  -> 
y  e.  ( span `  { z } ) ) )
115114adantr 451 . . . . . . . . . . . . . . . 16  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  y  =/=  0h )  ->  ( ( span `  {
( y  +h  z
) } )  =  ( span `  {
z } )  -> 
y  e.  ( span `  { z } ) ) )
116 spansneleq 22149 . . . . . . . . . . . . . . . . 17  |-  ( ( z  e.  ~H  /\  y  =/=  0h )  -> 
( y  e.  (
span `  { z } )  ->  ( span `  { y } )  =  ( span `  { z } ) ) )
117116adantll 694 . . . . . . . . . . . . . . . 16  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  y  =/=  0h )  ->  ( y  e.  (
span `  { z } )  ->  ( span `  { y } )  =  ( span `  { z } ) ) )
118115, 117syld 40 . . . . . . . . . . . . . . 15  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  y  =/=  0h )  ->  ( ( span `  {
( y  +h  z
) } )  =  ( span `  {
z } )  -> 
( span `  { y } )  =  (
span `  { z } ) ) )
11979, 118sylan9r 639 . . . . . . . . . . . . . 14  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  y  =/=  0h )  /\  B  =  ( span `  {
z } ) )  ->  ( ( span `  { ( y  +h  z ) } )  =  B  ->  ( span `  { y } )  =  ( span `  { z } ) ) )
120119necon3d 2484 . . . . . . . . . . . . 13  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  y  =/=  0h )  /\  B  =  ( span `  {
z } ) )  ->  ( ( span `  { y } )  =/=  ( span `  {
z } )  -> 
( span `  { (
y  +h  z ) } )  =/=  B
) )
121120adantlrr 701 . . . . . . . . . . . 12  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  (
y  =/=  0h  /\  z  =/=  0h ) )  /\  B  =  (
span `  { z } ) )  -> 
( ( span `  {
y } )  =/=  ( span `  {
z } )  -> 
( span `  { (
y  +h  z ) } )  =/=  B
) )
122121adantrl 696 . . . . . . . . . . 11  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  (
y  =/=  0h  /\  z  =/=  0h ) )  /\  ( A  =  ( span `  {
y } )  /\  B  =  ( span `  { z } ) ) )  ->  (
( span `  { y } )  =/=  ( span `  { z } )  ->  ( span `  { ( y  +h  z ) } )  =/=  B ) )
123122imp 418 . . . . . . . . . 10  |-  ( ( ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  (
y  =/=  0h  /\  z  =/=  0h ) )  /\  ( A  =  ( span `  {
y } )  /\  B  =  ( span `  { z } ) ) )  /\  ( span `  { y } )  =/=  ( span `  { z } ) )  ->  ( span `  { ( y  +h  z ) } )  =/=  B )
124 spanpr 22159 . . . . . . . . . . . . . 14  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( span `  {
( y  +h  z
) } )  C_  ( span `  { y ,  z } ) )
125124adantr 451 . . . . . . . . . . . . 13  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  ( A  =  (
span `  { y } )  /\  B  =  ( span `  {
z } ) ) )  ->  ( span `  { ( y  +h  z ) } ) 
C_  ( span `  {
y ,  z } ) )
126 oveq12 5867 . . . . . . . . . . . . . 14  |-  ( ( A  =  ( span `  { y } )  /\  B  =  (
span `  { z } ) )  -> 
( A  vH  B
)  =  ( (
span `  { y } )  vH  ( span `  { z } ) ) )
127 df-pr 3647 . . . . . . . . . . . . . . . . 17  |-  { y ,  z }  =  ( { y }  u.  { z } )
128127fveq2i 5528 . . . . . . . . . . . . . . . 16  |-  ( span `  { y ,  z } )  =  (
span `  ( {
y }  u.  {
z } ) )
129 snssi 3759 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  ~H  ->  { y }  C_  ~H )
130 snssi 3759 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  ~H  ->  { z }  C_  ~H )
131 spanun 22124 . . . . . . . . . . . . . . . . 17  |-  ( ( { y }  C_  ~H  /\  { z } 
C_  ~H )  ->  ( span `  ( { y }  u.  { z } ) )  =  ( ( span `  {
y } )  +H  ( span `  {
z } ) ) )
132129, 130, 131syl2an 463 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( span `  ( { y }  u.  { z } ) )  =  ( ( span `  { y } )  +H  ( span `  {
z } ) ) )
133128, 132syl5eq 2327 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( span `  {
y ,  z } )  =  ( (
span `  { y } )  +H  ( span `  { z } ) ) )
134 spansnch 22139 . . . . . . . . . . . . . . . 16  |-  ( y  e.  ~H  ->  ( span `  { y } )  e.  CH )
135 spansnj 22226 . . . . . . . . . . . . . . . 16  |-  ( ( ( span `  {
y } )  e. 
CH  /\  z  e.  ~H )  ->  ( (
span `  { y } )  +H  ( span `  { z } ) )  =  ( ( span `  {
y } )  vH  ( span `  { z } ) ) )
136134, 135sylan 457 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( ( span `  {
y } )  +H  ( span `  {
z } ) )  =  ( ( span `  { y } )  vH  ( span `  {
z } ) ) )
137133, 136eqtr2d 2316 . . . . . . . . . . . . . 14  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( ( span `  {
y } )  vH  ( span `  { z } ) )  =  ( span `  {
y ,  z } ) )
138126, 137sylan9eqr 2337 . . . . . . . . . . . . 13  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  ( A  =  (
span `  { y } )  /\  B  =  ( span `  {
z } ) ) )  ->  ( A  vH  B )  =  (
span `  { y ,  z } ) )
139125, 138sseqtr4d 3215 . . . . . . . . . . . 12  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  ( A  =  (
span `  { y } )  /\  B  =  ( span `  {
z } ) ) )  ->  ( span `  { ( y  +h  z ) } ) 
C_  ( A  vH  B ) )
140139adantlr 695 . . . . . . . . . . 11  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  (
y  =/=  0h  /\  z  =/=  0h ) )  /\  ( A  =  ( span `  {
y } )  /\  B  =  ( span `  { z } ) ) )  ->  ( span `  { ( y  +h  z ) } )  C_  ( A  vH  B ) )
141140adantr 451 . . . . . . . . . 10  |-  ( ( ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  (
y  =/=  0h  /\  z  =/=  0h ) )  /\  ( A  =  ( span `  {
y } )  /\  B  =  ( span `  { z } ) ) )  /\  ( span `  { y } )  =/=  ( span `  { z } ) )  ->  ( span `  { ( y  +h  z ) } ) 
C_  ( A  vH  B ) )
142 neeq1 2454 . . . . . . . . . . . 12  |-  ( x  =  ( span `  {
( y  +h  z
) } )  -> 
( x  =/=  A  <->  (
span `  { (
y  +h  z ) } )  =/=  A
) )
143 neeq1 2454 . . . . . . . . . . . 12  |-  ( x  =  ( span `  {
( y  +h  z
) } )  -> 
( x  =/=  B  <->  (
span `  { (
y  +h  z ) } )  =/=  B
) )
144 sseq1 3199 . . . . . . . . . . . 12  |-  ( x  =  ( span `  {
( y  +h  z
) } )  -> 
( x  C_  ( A  vH  B )  <->  ( span `  { ( y  +h  z ) } ) 
C_  ( A  vH  B ) ) )
145142, 143, 1443anbi123d 1252 . . . . . . . . . . 11  |-  ( x  =  ( span `  {
( y  +h  z
) } )  -> 
( ( x  =/= 
A  /\  x  =/=  B  /\  x  C_  ( A  vH  B ) )  <-> 
( ( span `  {
( y  +h  z
) } )  =/= 
A  /\  ( span `  { ( y  +h  z ) } )  =/=  B  /\  ( span `  { ( y  +h  z ) } )  C_  ( A  vH  B ) ) ) )
146145rspcev 2884 . . . . . . . . . 10  |-  ( ( ( span `  {
( y  +h  z
) } )  e. HAtoms  /\  ( ( span `  {
( y  +h  z
) } )  =/= 
A  /\  ( span `  { ( y  +h  z ) } )  =/=  B  /\  ( span `  { ( y  +h  z ) } )  C_  ( A  vH  B ) ) )  ->  E. x  e. HAtoms  (
x  =/=  A  /\  x  =/=  B  /\  x  C_  ( A  vH  B
) ) )
14729, 77, 123, 141, 146syl13anc 1184 . . . . . . . . 9  |-  ( ( ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  (
y  =/=  0h  /\  z  =/=  0h ) )  /\  ( A  =  ( span `  {
y } )  /\  B  =  ( span `  { z } ) ) )  /\  ( span `  { y } )  =/=  ( span `  { z } ) )  ->  E. x  e. HAtoms  ( x  =/=  A  /\  x  =/=  B  /\  x  C_  ( A  vH  B ) ) )
148147ex 423 . . . . . . . 8  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  (
y  =/=  0h  /\  z  =/=  0h ) )  /\  ( A  =  ( span `  {
y } )  /\  B  =  ( span `  { z } ) ) )  ->  (
( span `  { y } )  =/=  ( span `  { z } )  ->  E. x  e. HAtoms  ( x  =/=  A  /\  x  =/=  B  /\  x  C_  ( A  vH  B ) ) ) )
1498, 148sylbid 206 . . . . . . 7  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  (
y  =/=  0h  /\  z  =/=  0h ) )  /\  ( A  =  ( span `  {
y } )  /\  B  =  ( span `  { z } ) ) )  ->  ( A  =/=  B  ->  E. x  e. HAtoms  ( x  =/=  A  /\  x  =/=  B  /\  x  C_  ( A  vH  B ) ) ) )
150149expl 601 . . . . . 6  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( ( ( y  =/=  0h  /\  z  =/=  0h )  /\  ( A  =  ( span `  { y } )  /\  B  =  (
span `  { z } ) ) )  ->  ( A  =/= 
B  ->  E. x  e. HAtoms  ( x  =/=  A  /\  x  =/=  B  /\  x  C_  ( A  vH  B ) ) ) ) )
1514, 150syl5bi 208 . . . . 5  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( ( ( y  =/=  0h  /\  A  =  ( span `  {
y } ) )  /\  ( z  =/= 
0h  /\  B  =  ( span `  { z } ) ) )  ->  ( A  =/= 
B  ->  E. x  e. HAtoms  ( x  =/=  A  /\  x  =/=  B  /\  x  C_  ( A  vH  B ) ) ) ) )
152151rexlimivv 2672 . . . 4  |-  ( E. y  e.  ~H  E. z  e.  ~H  (
( y  =/=  0h  /\  A  =  ( span `  { y } ) )  /\  ( z  =/=  0h  /\  B  =  ( span `  {
z } ) ) )  ->  ( A  =/=  B  ->  E. x  e. HAtoms  ( x  =/=  A  /\  x  =/=  B  /\  x  C_  ( A  vH  B ) ) ) )
1533, 152sylbir 204 . . 3  |-  ( ( E. y  e.  ~H  ( y  =/=  0h  /\  A  =  ( span `  { y } ) )  /\  E. z  e.  ~H  ( z  =/= 
0h  /\  B  =  ( span `  { z } ) ) )  ->  ( A  =/= 
B  ->  E. x  e. HAtoms  ( x  =/=  A  /\  x  =/=  B  /\  x  C_  ( A  vH  B ) ) ) )
1541, 2, 153syl2anb 465 . 2  |-  ( ( A  e. HAtoms  /\  B  e. HAtoms
)  ->  ( A  =/=  B  ->  E. x  e. HAtoms  ( x  =/=  A  /\  x  =/=  B  /\  x  C_  ( A  vH  B ) ) ) )
1551543impia 1148 1  |-  ( ( A  e. HAtoms  /\  B  e. HAtoms  /\  A  =/=  B
)  ->  E. x  e. HAtoms  ( x  =/=  A  /\  x  =/=  B  /\  x  C_  ( A  vH  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   E.wrex 2544    u. cun 3150    C_ wss 3152   {csn 3640   {cpr 3641   ` cfv 5255  (class class class)co 5858   CCcc 8735   0cc0 8737   1c1 8738    + caddc 8740   -ucneg 9038   ~Hchil 21499    +h cva 21500    .h csm 21501   0hc0v 21504    -h cmv 21505   CHcch 21509    +H cph 21511   spancspn 21512    vH chj 21513  HAtomscat 21545
This theorem is referenced by:  chirredi  22974
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cc 8061  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816  ax-mulf 8817  ax-hilex 21579  ax-hfvadd 21580  ax-hvcom 21581  ax-hvass 21582  ax-hv0cl 21583  ax-hvaddid 21584  ax-hfvmul 21585  ax-hvmulid 21586  ax-hvmulass 21587  ax-hvdistr1 21588  ax-hvdistr2 21589  ax-hvmul0 21590  ax-hfi 21658  ax-his1 21661  ax-his2 21662  ax-his3 21663  ax-his4 21664  ax-hcompl 21781
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-omul 6484  df-er 6660  df-map 6774  df-pm 6775  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-fi 7165  df-sup 7194  df-oi 7225  df-card 7572  df-acn 7575  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-ioo 10660  df-ico 10662  df-icc 10663  df-fz 10783  df-fzo 10871  df-fl 10925  df-seq 11047  df-exp 11105  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-clim 11962  df-rlim 11963  df-sum 12159  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-starv 13223  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-hom 13232  df-cco 13233  df-rest 13327  df-topn 13328  df-topgen 13344  df-pt 13345  df-prds 13348  df-xrs 13403  df-0g 13404  df-gsum 13405  df-qtop 13410  df-imas 13411  df-xps 13413  df-mre 13488  df-mrc 13489  df-acs 13491  df-mnd 14367  df-submnd 14416  df-mulg 14492  df-cntz 14793  df-cmn 15091  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-cnfld 16378  df-top 16636  df-bases 16638  df-topon 16639  df-topsp 16640  df-cld 16756  df-ntr 16757  df-cls 16758  df-nei 16835  df-cn 16957  df-cnp 16958  df-lm 16959  df-haus 17043  df-tx 17257  df-hmeo 17446  df-fbas 17520  df-fg 17521  df-fil 17541  df-fm 17633  df-flim 17634  df-flf 17635  df-xms 17885  df-ms 17886  df-tms 17887  df-cfil 18681  df-cau 18682  df-cmet 18683  df-grpo 20858  df-gid 20859  df-ginv 20860  df-gdiv 20861  df-ablo 20949  df-subgo 20969  df-vc 21102  df-nv 21148  df-va 21151  df-ba 21152  df-sm 21153  df-0v 21154  df-vs 21155  df-nmcv 21156  df-ims 21157  df-dip 21274  df-ssp 21298  df-ph 21391  df-cbn 21442  df-hnorm 21548  df-hba 21549  df-hvsub 21551  df-hlim 21552  df-hcau 21553  df-sh 21786  df-ch 21801  df-oc 21831  df-ch0 21832  df-shs 21887  df-span 21888  df-chj 21889  df-pjh 21974  df-cv 22859  df-at 22918
  Copyright terms: Public domain W3C validator