HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  superpos Unicode version

Theorem superpos 22950
Description: Superposition Principle. If  A and  B are distinct atoms, there exists a third atom, distinct from  A and  B, that is the superposition of  A and  B. Definition 3.4-3(a) in [MegPav2000] p. 2345 (PDF p. 8). (Contributed by NM, 9-Jun-2006.) (New usage is discouraged.)
Assertion
Ref Expression
superpos  |-  ( ( A  e. HAtoms  /\  B  e. HAtoms  /\  A  =/=  B
)  ->  E. x  e. HAtoms  ( x  =/=  A  /\  x  =/=  B  /\  x  C_  ( A  vH  B ) ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem superpos
Dummy variables  y 
z  w  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 atom1d 22949 . . 3  |-  ( A  e. HAtoms 
<->  E. y  e.  ~H  ( y  =/=  0h  /\  A  =  ( span `  { y } ) ) )
2 atom1d 22949 . . 3  |-  ( B  e. HAtoms 
<->  E. z  e.  ~H  ( z  =/=  0h  /\  B  =  ( span `  { z } ) ) )
3 reeanv 2720 . . . 4  |-  ( E. y  e.  ~H  E. z  e.  ~H  (
( y  =/=  0h  /\  A  =  ( span `  { y } ) )  /\  ( z  =/=  0h  /\  B  =  ( span `  {
z } ) ) )  <->  ( E. y  e.  ~H  ( y  =/= 
0h  /\  A  =  ( span `  { y } ) )  /\  E. z  e.  ~H  (
z  =/=  0h  /\  B  =  ( span `  { z } ) ) ) )
4 an4 797 . . . . . 6  |-  ( ( ( y  =/=  0h  /\  A  =  ( span `  { y } ) )  /\  ( z  =/=  0h  /\  B  =  ( span `  {
z } ) ) )  <->  ( ( y  =/=  0h  /\  z  =/=  0h )  /\  ( A  =  ( span `  { y } )  /\  B  =  (
span `  { z } ) ) ) )
5 neeq1 2467 . . . . . . . . . 10  |-  ( A  =  ( span `  {
y } )  -> 
( A  =/=  B  <->  (
span `  { y } )  =/=  B
) )
6 neeq2 2468 . . . . . . . . . 10  |-  ( B  =  ( span `  {
z } )  -> 
( ( span `  {
y } )  =/= 
B  <->  ( span `  {
y } )  =/=  ( span `  {
z } ) ) )
75, 6sylan9bb 680 . . . . . . . . 9  |-  ( ( A  =  ( span `  { y } )  /\  B  =  (
span `  { z } ) )  -> 
( A  =/=  B  <->  (
span `  { y } )  =/=  ( span `  { z } ) ) )
87adantl 452 . . . . . . . 8  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  (
y  =/=  0h  /\  z  =/=  0h ) )  /\  ( A  =  ( span `  {
y } )  /\  B  =  ( span `  { z } ) ) )  ->  ( A  =/=  B  <->  ( span `  { y } )  =/=  ( span `  {
z } ) ) )
9 hvaddcl 21608 . . . . . . . . . . . . . 14  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( y  +h  z
)  e.  ~H )
109adantr 451 . . . . . . . . . . . . 13  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  ( span `  {
y } )  =/=  ( span `  {
z } ) )  ->  ( y  +h  z )  e.  ~H )
11 hvaddeq0 21664 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( ( y  +h  z )  =  0h  <->  y  =  ( -u 1  .h  z ) ) )
12 sneq 3664 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  ( -u 1  .h  z )  ->  { y }  =  { (
-u 1  .h  z
) } )
1312fveq2d 5545 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  ( -u 1  .h  z )  ->  ( span `  { y } )  =  ( span `  { ( -u 1  .h  z ) } ) )
14 neg1cn 9829 . . . . . . . . . . . . . . . . . . . 20  |-  -u 1  e.  CC
15 ax-1cn 8811 . . . . . . . . . . . . . . . . . . . . 21  |-  1  e.  CC
16 ax-1ne0 8822 . . . . . . . . . . . . . . . . . . . . 21  |-  1  =/=  0
1715, 16negne0i 9137 . . . . . . . . . . . . . . . . . . . 20  |-  -u 1  =/=  0
18 spansncol 22163 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( z  e.  ~H  /\  -u 1  e.  CC  /\  -u 1  =/=  0 )  ->  ( span `  {
( -u 1  .h  z
) } )  =  ( span `  {
z } ) )
1914, 17, 18mp3an23 1269 . . . . . . . . . . . . . . . . . . 19  |-  ( z  e.  ~H  ->  ( span `  { ( -u
1  .h  z ) } )  =  (
span `  { z } ) )
2013, 19sylan9eqr 2350 . . . . . . . . . . . . . . . . . 18  |-  ( ( z  e.  ~H  /\  y  =  ( -u 1  .h  z ) )  -> 
( span `  { y } )  =  (
span `  { z } ) )
2120ex 423 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  ~H  ->  (
y  =  ( -u
1  .h  z )  ->  ( span `  {
y } )  =  ( span `  {
z } ) ) )
2221adantl 452 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( y  =  (
-u 1  .h  z
)  ->  ( span `  { y } )  =  ( span `  {
z } ) ) )
2311, 22sylbid 206 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( ( y  +h  z )  =  0h  ->  ( span `  {
y } )  =  ( span `  {
z } ) ) )
2423necon3d 2497 . . . . . . . . . . . . . 14  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( ( span `  {
y } )  =/=  ( span `  {
z } )  -> 
( y  +h  z
)  =/=  0h )
)
2524imp 418 . . . . . . . . . . . . 13  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  ( span `  {
y } )  =/=  ( span `  {
z } ) )  ->  ( y  +h  z )  =/=  0h )
26 spansna 22946 . . . . . . . . . . . . 13  |-  ( ( ( y  +h  z
)  e.  ~H  /\  ( y  +h  z
)  =/=  0h )  ->  ( span `  {
( y  +h  z
) } )  e. HAtoms
)
2710, 25, 26syl2anc 642 . . . . . . . . . . . 12  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  ( span `  {
y } )  =/=  ( span `  {
z } ) )  ->  ( span `  {
( y  +h  z
) } )  e. HAtoms
)
2827adantlr 695 . . . . . . . . . . 11  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  (
y  =/=  0h  /\  z  =/=  0h ) )  /\  ( span `  {
y } )  =/=  ( span `  {
z } ) )  ->  ( span `  {
( y  +h  z
) } )  e. HAtoms
)
2928adantlr 695 . . . . . . . . . 10  |-  ( ( ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  (
y  =/=  0h  /\  z  =/=  0h ) )  /\  ( A  =  ( span `  {
y } )  /\  B  =  ( span `  { z } ) ) )  /\  ( span `  { y } )  =/=  ( span `  { z } ) )  ->  ( span `  { ( y  +h  z ) } )  e. HAtoms )
30 eqeq2 2305 . . . . . . . . . . . . . . . 16  |-  ( A  =  ( span `  {
y } )  -> 
( ( span `  {
( y  +h  z
) } )  =  A  <->  ( span `  {
( y  +h  z
) } )  =  ( span `  {
y } ) ) )
3130biimpd 198 . . . . . . . . . . . . . . 15  |-  ( A  =  ( span `  {
y } )  -> 
( ( span `  {
( y  +h  z
) } )  =  A  ->  ( span `  { ( y  +h  z ) } )  =  ( span `  {
y } ) ) )
32 spansneleqi 22164 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( y  +h  z )  e.  ~H  ->  (
( span `  { (
y  +h  z ) } )  =  (
span `  { y } )  ->  (
y  +h  z )  e.  ( span `  {
y } ) ) )
339, 32syl 15 . . . . . . . . . . . . . . . . . . 19  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( ( span `  {
( y  +h  z
) } )  =  ( span `  {
y } )  -> 
( y  +h  z
)  e.  ( span `  { y } ) ) )
34 elspansn 22161 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  e.  ~H  ->  (
( y  +h  z
)  e.  ( span `  { y } )  <->  E. v  e.  CC  ( y  +h  z
)  =  ( v  .h  y ) ) )
3534adantr 451 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( ( y  +h  z )  e.  (
span `  { y } )  <->  E. v  e.  CC  ( y  +h  z )  =  ( v  .h  y ) ) )
36 addcl 8835 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( v  e.  CC  /\  -u 1  e.  CC )  ->  ( v  + 
-u 1 )  e.  CC )
3714, 36mpan2 652 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( v  e.  CC  ->  (
v  +  -u 1
)  e.  CC )
3837ad2antlr 707 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  v  e.  CC )  /\  (
y  +h  z )  =  ( v  .h  y ) )  -> 
( v  +  -u
1 )  e.  CC )
39 hvmulcl 21609 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( v  e.  CC  /\  y  e.  ~H )  ->  ( v  .h  y
)  e.  ~H )
4039ancoms 439 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( y  e.  ~H  /\  v  e.  CC )  ->  ( v  .h  y
)  e.  ~H )
4140adantlr 695 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  v  e.  CC )  ->  ( v  .h  y )  e.  ~H )
42 simpll 730 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  v  e.  CC )  ->  y  e.  ~H )
43 simplr 731 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  v  e.  CC )  ->  z  e.  ~H )
44 hvsubadd 21672 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( v  .h  y
)  e.  ~H  /\  y  e.  ~H  /\  z  e.  ~H )  ->  (
( ( v  .h  y )  -h  y
)  =  z  <->  ( y  +h  z )  =  ( v  .h  y ) ) )
4541, 42, 43, 44syl3anc 1182 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  v  e.  CC )  ->  ( ( ( v  .h  y )  -h  y )  =  z  <->  ( y  +h  z )  =  ( v  .h  y ) ) )
4645biimpar 471 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  v  e.  CC )  /\  (
y  +h  z )  =  ( v  .h  y ) )  -> 
( ( v  .h  y )  -h  y
)  =  z )
47 hvsubval 21612 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( v  .h  y
)  e.  ~H  /\  y  e.  ~H )  ->  ( ( v  .h  y )  -h  y
)  =  ( ( v  .h  y )  +h  ( -u 1  .h  y ) ) )
4839, 47sylancom 648 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( v  e.  CC  /\  y  e.  ~H )  ->  ( ( v  .h  y )  -h  y
)  =  ( ( v  .h  y )  +h  ( -u 1  .h  y ) ) )
49 ax-hvdistr2 21605 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( v  e.  CC  /\  -u 1  e.  CC  /\  y  e.  ~H )  ->  ( ( v  + 
-u 1 )  .h  y )  =  ( ( v  .h  y
)  +h  ( -u
1  .h  y ) ) )
5014, 49mp3an2 1265 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( v  e.  CC  /\  y  e.  ~H )  ->  ( ( v  + 
-u 1 )  .h  y )  =  ( ( v  .h  y
)  +h  ( -u
1  .h  y ) ) )
5148, 50eqtr4d 2331 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( v  e.  CC  /\  y  e.  ~H )  ->  ( ( v  .h  y )  -h  y
)  =  ( ( v  +  -u 1
)  .h  y ) )
5251ancoms 439 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( y  e.  ~H  /\  v  e.  CC )  ->  ( ( v  .h  y )  -h  y
)  =  ( ( v  +  -u 1
)  .h  y ) )
5352adantlr 695 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  v  e.  CC )  ->  ( ( v  .h  y )  -h  y )  =  ( ( v  +  -u
1 )  .h  y
) )
5453adantr 451 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  v  e.  CC )  /\  (
y  +h  z )  =  ( v  .h  y ) )  -> 
( ( v  .h  y )  -h  y
)  =  ( ( v  +  -u 1
)  .h  y ) )
5546, 54eqtr3d 2330 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  v  e.  CC )  /\  (
y  +h  z )  =  ( v  .h  y ) )  -> 
z  =  ( ( v  +  -u 1
)  .h  y ) )
56 oveq1 5881 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( w  =  ( v  + 
-u 1 )  -> 
( w  .h  y
)  =  ( ( v  +  -u 1
)  .h  y ) )
5756eqeq2d 2307 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( w  =  ( v  + 
-u 1 )  -> 
( z  =  ( w  .h  y )  <-> 
z  =  ( ( v  +  -u 1
)  .h  y ) ) )
5857rspcev 2897 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( v  +  -u
1 )  e.  CC  /\  z  =  ( ( v  +  -u 1
)  .h  y ) )  ->  E. w  e.  CC  z  =  ( w  .h  y ) )
5938, 55, 58syl2anc 642 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  v  e.  CC )  /\  (
y  +h  z )  =  ( v  .h  y ) )  ->  E. w  e.  CC  z  =  ( w  .h  y ) )
6059exp31 587 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( v  e.  CC  ->  ( ( y  +h  z )  =  ( v  .h  y )  ->  E. w  e.  CC  z  =  ( w  .h  y ) ) ) )
6160rexlimdv 2679 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( E. v  e.  CC  ( y  +h  z )  =  ( v  .h  y )  ->  E. w  e.  CC  z  =  ( w  .h  y ) ) )
6235, 61sylbid 206 . . . . . . . . . . . . . . . . . . 19  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( ( y  +h  z )  e.  (
span `  { y } )  ->  E. w  e.  CC  z  =  ( w  .h  y ) ) )
6333, 62syld 40 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( ( span `  {
( y  +h  z
) } )  =  ( span `  {
y } )  ->  E. w  e.  CC  z  =  ( w  .h  y ) ) )
64 elspansn 22161 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  ~H  ->  (
z  e.  ( span `  { y } )  <->  E. w  e.  CC  z  =  ( w  .h  y ) ) )
6564adantr 451 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( z  e.  (
span `  { y } )  <->  E. w  e.  CC  z  =  ( w  .h  y ) ) )
6663, 65sylibrd 225 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( ( span `  {
( y  +h  z
) } )  =  ( span `  {
y } )  -> 
z  e.  ( span `  { y } ) ) )
6766adantr 451 . . . . . . . . . . . . . . . 16  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  z  =/=  0h )  ->  ( ( span `  {
( y  +h  z
) } )  =  ( span `  {
y } )  -> 
z  e.  ( span `  { y } ) ) )
68 spansneleq 22165 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  e.  ~H  /\  z  =/=  0h )  -> 
( z  e.  (
span `  { y } )  ->  ( span `  { z } )  =  ( span `  { y } ) ) )
69 eqcom 2298 . . . . . . . . . . . . . . . . . 18  |-  ( (
span `  { z } )  =  (
span `  { y } )  <->  ( span `  { y } )  =  ( span `  {
z } ) )
7068, 69syl6ib 217 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  ~H  /\  z  =/=  0h )  -> 
( z  e.  (
span `  { y } )  ->  ( span `  { y } )  =  ( span `  { z } ) ) )
7170adantlr 695 . . . . . . . . . . . . . . . 16  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  z  =/=  0h )  ->  ( z  e.  (
span `  { y } )  ->  ( span `  { y } )  =  ( span `  { z } ) ) )
7267, 71syld 40 . . . . . . . . . . . . . . 15  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  z  =/=  0h )  ->  ( ( span `  {
( y  +h  z
) } )  =  ( span `  {
y } )  -> 
( span `  { y } )  =  (
span `  { z } ) ) )
7331, 72sylan9r 639 . . . . . . . . . . . . . 14  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  z  =/=  0h )  /\  A  =  ( span `  {
y } ) )  ->  ( ( span `  { ( y  +h  z ) } )  =  A  ->  ( span `  { y } )  =  ( span `  { z } ) ) )
7473necon3d 2497 . . . . . . . . . . . . 13  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  z  =/=  0h )  /\  A  =  ( span `  {
y } ) )  ->  ( ( span `  { y } )  =/=  ( span `  {
z } )  -> 
( span `  { (
y  +h  z ) } )  =/=  A
) )
7574adantlrl 700 . . . . . . . . . . . 12  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  (
y  =/=  0h  /\  z  =/=  0h ) )  /\  A  =  (
span `  { y } ) )  -> 
( ( span `  {
y } )  =/=  ( span `  {
z } )  -> 
( span `  { (
y  +h  z ) } )  =/=  A
) )
7675adantrr 697 . . . . . . . . . . 11  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  (
y  =/=  0h  /\  z  =/=  0h ) )  /\  ( A  =  ( span `  {
y } )  /\  B  =  ( span `  { z } ) ) )  ->  (
( span `  { y } )  =/=  ( span `  { z } )  ->  ( span `  { ( y  +h  z ) } )  =/=  A ) )
7776imp 418 . . . . . . . . . 10  |-  ( ( ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  (
y  =/=  0h  /\  z  =/=  0h ) )  /\  ( A  =  ( span `  {
y } )  /\  B  =  ( span `  { z } ) ) )  /\  ( span `  { y } )  =/=  ( span `  { z } ) )  ->  ( span `  { ( y  +h  z ) } )  =/=  A )
78 eqeq2 2305 . . . . . . . . . . . . . . . 16  |-  ( B  =  ( span `  {
z } )  -> 
( ( span `  {
( y  +h  z
) } )  =  B  <->  ( span `  {
( y  +h  z
) } )  =  ( span `  {
z } ) ) )
7978biimpd 198 . . . . . . . . . . . . . . 15  |-  ( B  =  ( span `  {
z } )  -> 
( ( span `  {
( y  +h  z
) } )  =  B  ->  ( span `  { ( y  +h  z ) } )  =  ( span `  {
z } ) ) )
80 spansneleqi 22164 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( y  +h  z )  e.  ~H  ->  (
( span `  { (
y  +h  z ) } )  =  (
span `  { z } )  ->  (
y  +h  z )  e.  ( span `  {
z } ) ) )
819, 80syl 15 . . . . . . . . . . . . . . . . . . 19  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( ( span `  {
( y  +h  z
) } )  =  ( span `  {
z } )  -> 
( y  +h  z
)  e.  ( span `  { z } ) ) )
82 elspansn 22161 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  e.  ~H  ->  (
( y  +h  z
)  e.  ( span `  { z } )  <->  E. v  e.  CC  ( y  +h  z
)  =  ( v  .h  z ) ) )
8382adantl 452 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( ( y  +h  z )  e.  (
span `  { z } )  <->  E. v  e.  CC  ( y  +h  z )  =  ( v  .h  z ) ) )
8437ad2antlr 707 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  v  e.  CC )  /\  (
y  +h  z )  =  ( v  .h  z ) )  -> 
( v  +  -u
1 )  e.  CC )
85 hvmulcl 21609 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( v  e.  CC  /\  z  e.  ~H )  ->  ( v  .h  z
)  e.  ~H )
8685ancoms 439 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( z  e.  ~H  /\  v  e.  CC )  ->  ( v  .h  z
)  e.  ~H )
8786adantll 694 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  v  e.  CC )  ->  ( v  .h  z )  e.  ~H )
88 hvsubadd 21672 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( v  .h  z
)  e.  ~H  /\  z  e.  ~H  /\  y  e.  ~H )  ->  (
( ( v  .h  z )  -h  z
)  =  y  <->  ( z  +h  y )  =  ( v  .h  z ) ) )
8987, 43, 42, 88syl3anc 1182 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  v  e.  CC )  ->  ( ( ( v  .h  z )  -h  z )  =  y  <->  ( z  +h  y )  =  ( v  .h  z ) ) )
90 ax-hvcom 21597 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( y  +h  z
)  =  ( z  +h  y ) )
9190adantr 451 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  v  e.  CC )  ->  ( y  +h  z )  =  ( z  +h  y ) )
9291eqeq1d 2304 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  v  e.  CC )  ->  ( ( y  +h  z )  =  ( v  .h  z
)  <->  ( z  +h  y )  =  ( v  .h  z ) ) )
9389, 92bitr4d 247 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  v  e.  CC )  ->  ( ( ( v  .h  z )  -h  z )  =  y  <->  ( y  +h  z )  =  ( v  .h  z ) ) )
9493biimpar 471 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  v  e.  CC )  /\  (
y  +h  z )  =  ( v  .h  z ) )  -> 
( ( v  .h  z )  -h  z
)  =  y )
95 hvsubval 21612 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( v  .h  z
)  e.  ~H  /\  z  e.  ~H )  ->  ( ( v  .h  z )  -h  z
)  =  ( ( v  .h  z )  +h  ( -u 1  .h  z ) ) )
9685, 95sylancom 648 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( v  e.  CC  /\  z  e.  ~H )  ->  ( ( v  .h  z )  -h  z
)  =  ( ( v  .h  z )  +h  ( -u 1  .h  z ) ) )
97 ax-hvdistr2 21605 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( v  e.  CC  /\  -u 1  e.  CC  /\  z  e.  ~H )  ->  ( ( v  + 
-u 1 )  .h  z )  =  ( ( v  .h  z
)  +h  ( -u
1  .h  z ) ) )
9814, 97mp3an2 1265 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( v  e.  CC  /\  z  e.  ~H )  ->  ( ( v  + 
-u 1 )  .h  z )  =  ( ( v  .h  z
)  +h  ( -u
1  .h  z ) ) )
9996, 98eqtr4d 2331 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( v  e.  CC  /\  z  e.  ~H )  ->  ( ( v  .h  z )  -h  z
)  =  ( ( v  +  -u 1
)  .h  z ) )
10099ancoms 439 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( z  e.  ~H  /\  v  e.  CC )  ->  ( ( v  .h  z )  -h  z
)  =  ( ( v  +  -u 1
)  .h  z ) )
101100adantll 694 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  v  e.  CC )  ->  ( ( v  .h  z )  -h  z )  =  ( ( v  +  -u
1 )  .h  z
) )
102101adantr 451 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  v  e.  CC )  /\  (
y  +h  z )  =  ( v  .h  z ) )  -> 
( ( v  .h  z )  -h  z
)  =  ( ( v  +  -u 1
)  .h  z ) )
10394, 102eqtr3d 2330 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  v  e.  CC )  /\  (
y  +h  z )  =  ( v  .h  z ) )  -> 
y  =  ( ( v  +  -u 1
)  .h  z ) )
104 oveq1 5881 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( w  =  ( v  + 
-u 1 )  -> 
( w  .h  z
)  =  ( ( v  +  -u 1
)  .h  z ) )
105104eqeq2d 2307 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( w  =  ( v  + 
-u 1 )  -> 
( y  =  ( w  .h  z )  <-> 
y  =  ( ( v  +  -u 1
)  .h  z ) ) )
106105rspcev 2897 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( v  +  -u
1 )  e.  CC  /\  y  =  ( ( v  +  -u 1
)  .h  z ) )  ->  E. w  e.  CC  y  =  ( w  .h  z ) )
10784, 103, 106syl2anc 642 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  v  e.  CC )  /\  (
y  +h  z )  =  ( v  .h  z ) )  ->  E. w  e.  CC  y  =  ( w  .h  z ) )
108107exp31 587 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( v  e.  CC  ->  ( ( y  +h  z )  =  ( v  .h  z )  ->  E. w  e.  CC  y  =  ( w  .h  z ) ) ) )
109108rexlimdv 2679 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( E. v  e.  CC  ( y  +h  z )  =  ( v  .h  z )  ->  E. w  e.  CC  y  =  ( w  .h  z ) ) )
11083, 109sylbid 206 . . . . . . . . . . . . . . . . . . 19  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( ( y  +h  z )  e.  (
span `  { z } )  ->  E. w  e.  CC  y  =  ( w  .h  z ) ) )
11181, 110syld 40 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( ( span `  {
( y  +h  z
) } )  =  ( span `  {
z } )  ->  E. w  e.  CC  y  =  ( w  .h  z ) ) )
112 elspansn 22161 . . . . . . . . . . . . . . . . . . 19  |-  ( z  e.  ~H  ->  (
y  e.  ( span `  { z } )  <->  E. w  e.  CC  y  =  ( w  .h  z ) ) )
113112adantl 452 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( y  e.  (
span `  { z } )  <->  E. w  e.  CC  y  =  ( w  .h  z ) ) )
114111, 113sylibrd 225 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( ( span `  {
( y  +h  z
) } )  =  ( span `  {
z } )  -> 
y  e.  ( span `  { z } ) ) )
115114adantr 451 . . . . . . . . . . . . . . . 16  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  y  =/=  0h )  ->  ( ( span `  {
( y  +h  z
) } )  =  ( span `  {
z } )  -> 
y  e.  ( span `  { z } ) ) )
116 spansneleq 22165 . . . . . . . . . . . . . . . . 17  |-  ( ( z  e.  ~H  /\  y  =/=  0h )  -> 
( y  e.  (
span `  { z } )  ->  ( span `  { y } )  =  ( span `  { z } ) ) )
117116adantll 694 . . . . . . . . . . . . . . . 16  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  y  =/=  0h )  ->  ( y  e.  (
span `  { z } )  ->  ( span `  { y } )  =  ( span `  { z } ) ) )
118115, 117syld 40 . . . . . . . . . . . . . . 15  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  y  =/=  0h )  ->  ( ( span `  {
( y  +h  z
) } )  =  ( span `  {
z } )  -> 
( span `  { y } )  =  (
span `  { z } ) ) )
11979, 118sylan9r 639 . . . . . . . . . . . . . 14  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  y  =/=  0h )  /\  B  =  ( span `  {
z } ) )  ->  ( ( span `  { ( y  +h  z ) } )  =  B  ->  ( span `  { y } )  =  ( span `  { z } ) ) )
120119necon3d 2497 . . . . . . . . . . . . 13  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  y  =/=  0h )  /\  B  =  ( span `  {
z } ) )  ->  ( ( span `  { y } )  =/=  ( span `  {
z } )  -> 
( span `  { (
y  +h  z ) } )  =/=  B
) )
121120adantlrr 701 . . . . . . . . . . . 12  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  (
y  =/=  0h  /\  z  =/=  0h ) )  /\  B  =  (
span `  { z } ) )  -> 
( ( span `  {
y } )  =/=  ( span `  {
z } )  -> 
( span `  { (
y  +h  z ) } )  =/=  B
) )
122121adantrl 696 . . . . . . . . . . 11  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  (
y  =/=  0h  /\  z  =/=  0h ) )  /\  ( A  =  ( span `  {
y } )  /\  B  =  ( span `  { z } ) ) )  ->  (
( span `  { y } )  =/=  ( span `  { z } )  ->  ( span `  { ( y  +h  z ) } )  =/=  B ) )
123122imp 418 . . . . . . . . . 10  |-  ( ( ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  (
y  =/=  0h  /\  z  =/=  0h ) )  /\  ( A  =  ( span `  {
y } )  /\  B  =  ( span `  { z } ) ) )  /\  ( span `  { y } )  =/=  ( span `  { z } ) )  ->  ( span `  { ( y  +h  z ) } )  =/=  B )
124 spanpr 22175 . . . . . . . . . . . . . 14  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( span `  {
( y  +h  z
) } )  C_  ( span `  { y ,  z } ) )
125124adantr 451 . . . . . . . . . . . . 13  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  ( A  =  (
span `  { y } )  /\  B  =  ( span `  {
z } ) ) )  ->  ( span `  { ( y  +h  z ) } ) 
C_  ( span `  {
y ,  z } ) )
126 oveq12 5883 . . . . . . . . . . . . . 14  |-  ( ( A  =  ( span `  { y } )  /\  B  =  (
span `  { z } ) )  -> 
( A  vH  B
)  =  ( (
span `  { y } )  vH  ( span `  { z } ) ) )
127 df-pr 3660 . . . . . . . . . . . . . . . . 17  |-  { y ,  z }  =  ( { y }  u.  { z } )
128127fveq2i 5544 . . . . . . . . . . . . . . . 16  |-  ( span `  { y ,  z } )  =  (
span `  ( {
y }  u.  {
z } ) )
129 snssi 3775 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  ~H  ->  { y }  C_  ~H )
130 snssi 3775 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  ~H  ->  { z }  C_  ~H )
131 spanun 22140 . . . . . . . . . . . . . . . . 17  |-  ( ( { y }  C_  ~H  /\  { z } 
C_  ~H )  ->  ( span `  ( { y }  u.  { z } ) )  =  ( ( span `  {
y } )  +H  ( span `  {
z } ) ) )
132129, 130, 131syl2an 463 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( span `  ( { y }  u.  { z } ) )  =  ( ( span `  { y } )  +H  ( span `  {
z } ) ) )
133128, 132syl5eq 2340 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( span `  {
y ,  z } )  =  ( (
span `  { y } )  +H  ( span `  { z } ) ) )
134 spansnch 22155 . . . . . . . . . . . . . . . 16  |-  ( y  e.  ~H  ->  ( span `  { y } )  e.  CH )
135 spansnj 22242 . . . . . . . . . . . . . . . 16  |-  ( ( ( span `  {
y } )  e. 
CH  /\  z  e.  ~H )  ->  ( (
span `  { y } )  +H  ( span `  { z } ) )  =  ( ( span `  {
y } )  vH  ( span `  { z } ) ) )
136134, 135sylan 457 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( ( span `  {
y } )  +H  ( span `  {
z } ) )  =  ( ( span `  { y } )  vH  ( span `  {
z } ) ) )
137133, 136eqtr2d 2329 . . . . . . . . . . . . . 14  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( ( span `  {
y } )  vH  ( span `  { z } ) )  =  ( span `  {
y ,  z } ) )
138126, 137sylan9eqr 2350 . . . . . . . . . . . . 13  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  ( A  =  (
span `  { y } )  /\  B  =  ( span `  {
z } ) ) )  ->  ( A  vH  B )  =  (
span `  { y ,  z } ) )
139125, 138sseqtr4d 3228 . . . . . . . . . . . 12  |-  ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  ( A  =  (
span `  { y } )  /\  B  =  ( span `  {
z } ) ) )  ->  ( span `  { ( y  +h  z ) } ) 
C_  ( A  vH  B ) )
140139adantlr 695 . . . . . . . . . . 11  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  (
y  =/=  0h  /\  z  =/=  0h ) )  /\  ( A  =  ( span `  {
y } )  /\  B  =  ( span `  { z } ) ) )  ->  ( span `  { ( y  +h  z ) } )  C_  ( A  vH  B ) )
141140adantr 451 . . . . . . . . . 10  |-  ( ( ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  (
y  =/=  0h  /\  z  =/=  0h ) )  /\  ( A  =  ( span `  {
y } )  /\  B  =  ( span `  { z } ) ) )  /\  ( span `  { y } )  =/=  ( span `  { z } ) )  ->  ( span `  { ( y  +h  z ) } ) 
C_  ( A  vH  B ) )
142 neeq1 2467 . . . . . . . . . . . 12  |-  ( x  =  ( span `  {
( y  +h  z
) } )  -> 
( x  =/=  A  <->  (
span `  { (
y  +h  z ) } )  =/=  A
) )
143 neeq1 2467 . . . . . . . . . . . 12  |-  ( x  =  ( span `  {
( y  +h  z
) } )  -> 
( x  =/=  B  <->  (
span `  { (
y  +h  z ) } )  =/=  B
) )
144 sseq1 3212 . . . . . . . . . . . 12  |-  ( x  =  ( span `  {
( y  +h  z
) } )  -> 
( x  C_  ( A  vH  B )  <->  ( span `  { ( y  +h  z ) } ) 
C_  ( A  vH  B ) ) )
145142, 143, 1443anbi123d 1252 . . . . . . . . . . 11  |-  ( x  =  ( span `  {
( y  +h  z
) } )  -> 
( ( x  =/= 
A  /\  x  =/=  B  /\  x  C_  ( A  vH  B ) )  <-> 
( ( span `  {
( y  +h  z
) } )  =/= 
A  /\  ( span `  { ( y  +h  z ) } )  =/=  B  /\  ( span `  { ( y  +h  z ) } )  C_  ( A  vH  B ) ) ) )
146145rspcev 2897 . . . . . . . . . 10  |-  ( ( ( span `  {
( y  +h  z
) } )  e. HAtoms  /\  ( ( span `  {
( y  +h  z
) } )  =/= 
A  /\  ( span `  { ( y  +h  z ) } )  =/=  B  /\  ( span `  { ( y  +h  z ) } )  C_  ( A  vH  B ) ) )  ->  E. x  e. HAtoms  (
x  =/=  A  /\  x  =/=  B  /\  x  C_  ( A  vH  B
) ) )
14729, 77, 123, 141, 146syl13anc 1184 . . . . . . . . 9  |-  ( ( ( ( ( y  e.  ~H  /\  z  e.  ~H )  /\  (
y  =/=  0h  /\  z  =/=  0h ) )  /\  ( A  =  ( span `  {
y } )  /\  B  =  ( span `  { z } ) ) )  /\  ( span `  { y } )  =/=  ( span `  { z } ) )  ->  E. x  e. HAtoms  ( x  =/=  A  /\  x  =/=  B  /\  x  C_  ( A  vH  B ) ) )
148147ex 423 . . . . . . . 8  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  (
y  =/=  0h  /\  z  =/=  0h ) )  /\  ( A  =  ( span `  {
y } )  /\  B  =  ( span `  { z } ) ) )  ->  (
( span `  { y } )  =/=  ( span `  { z } )  ->  E. x  e. HAtoms  ( x  =/=  A  /\  x  =/=  B  /\  x  C_  ( A  vH  B ) ) ) )
1498, 148sylbid 206 . . . . . . 7  |-  ( ( ( ( y  e. 
~H  /\  z  e.  ~H )  /\  (
y  =/=  0h  /\  z  =/=  0h ) )  /\  ( A  =  ( span `  {
y } )  /\  B  =  ( span `  { z } ) ) )  ->  ( A  =/=  B  ->  E. x  e. HAtoms  ( x  =/=  A  /\  x  =/=  B  /\  x  C_  ( A  vH  B ) ) ) )
150149expl 601 . . . . . 6  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( ( ( y  =/=  0h  /\  z  =/=  0h )  /\  ( A  =  ( span `  { y } )  /\  B  =  (
span `  { z } ) ) )  ->  ( A  =/= 
B  ->  E. x  e. HAtoms  ( x  =/=  A  /\  x  =/=  B  /\  x  C_  ( A  vH  B ) ) ) ) )
1514, 150syl5bi 208 . . . . 5  |-  ( ( y  e.  ~H  /\  z  e.  ~H )  ->  ( ( ( y  =/=  0h  /\  A  =  ( span `  {
y } ) )  /\  ( z  =/= 
0h  /\  B  =  ( span `  { z } ) ) )  ->  ( A  =/= 
B  ->  E. x  e. HAtoms  ( x  =/=  A  /\  x  =/=  B  /\  x  C_  ( A  vH  B ) ) ) ) )
152151rexlimivv 2685 . . . 4  |-  ( E. y  e.  ~H  E. z  e.  ~H  (
( y  =/=  0h  /\  A  =  ( span `  { y } ) )  /\  ( z  =/=  0h  /\  B  =  ( span `  {
z } ) ) )  ->  ( A  =/=  B  ->  E. x  e. HAtoms  ( x  =/=  A  /\  x  =/=  B  /\  x  C_  ( A  vH  B ) ) ) )
1533, 152sylbir 204 . . 3  |-  ( ( E. y  e.  ~H  ( y  =/=  0h  /\  A  =  ( span `  { y } ) )  /\  E. z  e.  ~H  ( z  =/= 
0h  /\  B  =  ( span `  { z } ) ) )  ->  ( A  =/= 
B  ->  E. x  e. HAtoms  ( x  =/=  A  /\  x  =/=  B  /\  x  C_  ( A  vH  B ) ) ) )
1541, 2, 153syl2anb 465 . 2  |-  ( ( A  e. HAtoms  /\  B  e. HAtoms
)  ->  ( A  =/=  B  ->  E. x  e. HAtoms  ( x  =/=  A  /\  x  =/=  B  /\  x  C_  ( A  vH  B ) ) ) )
1551543impia 1148 1  |-  ( ( A  e. HAtoms  /\  B  e. HAtoms  /\  A  =/=  B
)  ->  E. x  e. HAtoms  ( x  =/=  A  /\  x  =/=  B  /\  x  C_  ( A  vH  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    =/= wne 2459   E.wrex 2557    u. cun 3163    C_ wss 3165   {csn 3653   {cpr 3654   ` cfv 5271  (class class class)co 5874   CCcc 8751   0cc0 8753   1c1 8754    + caddc 8756   -ucneg 9054   ~Hchil 21515    +h cva 21516    .h csm 21517   0hc0v 21520    -h cmv 21521   CHcch 21525    +H cph 21527   spancspn 21528    vH chj 21529  HAtomscat 21561
This theorem is referenced by:  chirredi  22990
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cc 8077  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831  ax-addf 8832  ax-mulf 8833  ax-hilex 21595  ax-hfvadd 21596  ax-hvcom 21597  ax-hvass 21598  ax-hv0cl 21599  ax-hvaddid 21600  ax-hfvmul 21601  ax-hvmulid 21602  ax-hvmulass 21603  ax-hvdistr1 21604  ax-hvdistr2 21605  ax-hvmul0 21606  ax-hfi 21674  ax-his1 21677  ax-his2 21678  ax-his3 21679  ax-his4 21680  ax-hcompl 21797
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-of 6094  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-omul 6500  df-er 6676  df-map 6790  df-pm 6791  df-ixp 6834  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-fi 7181  df-sup 7210  df-oi 7241  df-card 7588  df-acn 7591  df-cda 7810  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-7 9825  df-8 9826  df-9 9827  df-10 9828  df-n0 9982  df-z 10041  df-dec 10141  df-uz 10247  df-q 10333  df-rp 10371  df-xneg 10468  df-xadd 10469  df-xmul 10470  df-ioo 10676  df-ico 10678  df-icc 10679  df-fz 10799  df-fzo 10887  df-fl 10941  df-seq 11063  df-exp 11121  df-hash 11354  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-clim 11978  df-rlim 11979  df-sum 12175  df-struct 13166  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-mulr 13238  df-starv 13239  df-sca 13240  df-vsca 13241  df-tset 13243  df-ple 13244  df-ds 13246  df-hom 13248  df-cco 13249  df-rest 13343  df-topn 13344  df-topgen 13360  df-pt 13361  df-prds 13364  df-xrs 13419  df-0g 13420  df-gsum 13421  df-qtop 13426  df-imas 13427  df-xps 13429  df-mre 13504  df-mrc 13505  df-acs 13507  df-mnd 14383  df-submnd 14432  df-mulg 14508  df-cntz 14809  df-cmn 15107  df-xmet 16389  df-met 16390  df-bl 16391  df-mopn 16392  df-cnfld 16394  df-top 16652  df-bases 16654  df-topon 16655  df-topsp 16656  df-cld 16772  df-ntr 16773  df-cls 16774  df-nei 16851  df-cn 16973  df-cnp 16974  df-lm 16975  df-haus 17059  df-tx 17273  df-hmeo 17462  df-fbas 17536  df-fg 17537  df-fil 17557  df-fm 17649  df-flim 17650  df-flf 17651  df-xms 17901  df-ms 17902  df-tms 17903  df-cfil 18697  df-cau 18698  df-cmet 18699  df-grpo 20874  df-gid 20875  df-ginv 20876  df-gdiv 20877  df-ablo 20965  df-subgo 20985  df-vc 21118  df-nv 21164  df-va 21167  df-ba 21168  df-sm 21169  df-0v 21170  df-vs 21171  df-nmcv 21172  df-ims 21173  df-dip 21290  df-ssp 21314  df-ph 21407  df-cbn 21458  df-hnorm 21564  df-hba 21565  df-hvsub 21567  df-hlim 21568  df-hcau 21569  df-sh 21802  df-ch 21817  df-oc 21847  df-ch0 21848  df-shs 21903  df-span 21904  df-chj 21905  df-pjh 21990  df-cv 22875  df-at 22934
  Copyright terms: Public domain W3C validator